1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在O的内接四边形ABCD中,AB是直径,BCD=120,过D点的切线PD与直线AB交于点P,则ADP的度数为()A40B35C30D452如图,PA
2、,PB切O于点A,B,点C是O上一点,且P36,则ACB()A54B72C108D1443如图,是用一把直尺、含60角的直角三角板和光盘摆放而成,点为60角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是( )ABC6D34某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A1:2B1:3C1:D:15在反比例函数的图象的每一条曲线上,都随的增大而减小,则的取值范围是( )ABCD6用配方法解方程时,原方程应变形为( )ABCD7如图,把一张圆形纸片和一张含45角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么
3、圆形纸片和扇形纸片的面积比是( )A4:5B2:5C:2D:8我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()ABCD9如图,反比例函数y(x0)的图象经过RtBOC斜边上的中点A,与边BC交于点D,连接AD,则ADB的面积为()A12B16C20D2410下列命题若,则相等的圆心角所对的弧相等各边都相等的多边形是正多边形 的平方根是其中真命题的个数是( )A0B1C2D3二、填空题(每小题3分,共24分)11如图,在矩形中对角线与相交于点,垂足为点,且,则的长为_.12从1,2,3,
4、4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是 13菱形的两条对角线分别是,则菱形的边长为_,面积为_14已知ABCD,AD与BC相交于点O.若,AD10,则AO_.15当_时,关于的一元二次方程有两个实数根.16已知点P(x1,y1)和Q(2,y2)在二次函数y(x+k)(xk2)的图象上,其中k0,若y1y2,则x1的取值范围为_17如图,ABC内接于圆,点D在弧BC上,记BAC-BCD=,则图中等于的角是_ 18如图是小孔成像原理的示意图,点与物体的距离为,与像的距离是,. 若物体的高度为,则像的高度是_. 三、解答题(共66分)19(10分)在一个不透明的布袋里装有4个
5、标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为,小红在剩下的3个小球中随机取出一个小球,记下数字为。(1)计算由、确定的点在函数的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若、满足6则小明胜,若、满足6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.20(6分)已知关于的一元二次方程(1)若此方程有两个实数根,求的最小整数值;(2)若此方程的两个实数根为,且满足,求的值21(6分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A
6、地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60方向行驶至B地,再沿北偏西37方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53,cos53,tan53)22(8分)在平面直角坐标系中,抛物线y4x28mxm2+2m的顶点p(1)点p的坐标为 (含m的式子表示)(2)当1x1时,y的最大值为5,则m的值为多少;(3)若抛物线与x轴(不包括x轴上的点)所围成的封闭区域只含有1个整数点,求m的取值范围23(8分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72
7、元)设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元,(1)求y与x的函数关系式,并直接写出x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?24(8分)4月23日,为迎接“世界读书日”,某书城开展购书有奖活动.顾客每购书满100元获得一次摸奖机会,规则为:一个不透明的袋子中装有4个小球,小球上分别标有数字1,2,3,4,它们除所标数字外完全相同,摇匀后同时从中随机摸出两个小球,则两球所标数字之和与奖励的购书券金额的对应关系如下:两球所标数字之和34567奖励的购书券金额(元)00306090(1)通过列表或画树状图的方法计算摸奖一次获得90
8、元购书券的概率;(2)书城规定:如果顾客不愿意参加摸奖,那么可以直接获得30元的购书券.在“参加摸奖”和“直接获得购书券”两种方式中,你认为哪种方式对顾客更合算?请通过求平均教的方法说明理由.25(10分)如图,点D,E分别在ABC的AB,AC边上,且DEBC,AGBC于点G,与DE交于点F已知,BC10,AF1FG2,求DE的长26(10分)在半圆O中,AB为直径,AC、AD为两条弦,且CAD+CAB90(1)如图1,求证:弧AC等于弧CD;(2)如图2,点E在直径AB上,CE交AD于点F,若AFCF,求证:AD2CE;(3)如图3,在(2)的条件下,连接BD,若AE4,BD12,求弦AC的
9、长参考答案一、选择题(每小题3分,共30分)1、C【分析】连接,即,又,故,所以;又因为为切线,利用切线与圆的关系即可得出结果【详解】解:连接BD,DAB=180C=60,AB是直径,ADB=90,ABD=90DAB=30,PD是切线,ADP=ABD=30,故选C【点睛】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解2、B【解析】连接AO,BO,P=36,所以AOB=144,所以ACB=72.故选B.3、A【分析】设三角板与圆的切点为C,连接,由切线长定理得出、,根据可得答案【详解】解:设三角板与圆的切点为C,连接OA、OB,如下图所示:由切
10、线长定理知 , ,在中, 光盘的直径为 ,故选【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键4、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度【详解】水平距离=4,则坡度为:1:4=1:1故选A【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比5、C【分析】根据反比例函数的性质,可得出1-m0,从而得出m的取值范围【详解】反比例函数的图象的每一条曲线上,y都随x的增大而减小,1-m0,解得m1,故答案为m1【点睛】本题考查了反比例函数的性质,当k0时,在每个象限内,y都随x的增大而
11、减小;当k0时,在每个象限内,y都随x的增大而增大6、A【分析】方程常数项移到右边,两边加上1变形即可得到结果【详解】方程移项得:x22x5,配方得:x22x11,即(x1)21故选:A【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键7、A【分析】首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可【详解】如图1,连接OD,四边形ABCD是正方形,DCB=ABO=90,AB=BC=CD=1,AOB=41,OB=AB=1,由勾股定理得:,扇形的面积是;如图2,连接MB、MC,四边形ABCD是M的内接四边形,四边形ABCD是正方形,BMC=90,MB=MC
12、,MCB=MBC=41,BC=1,MC=MB=,M的面积是,扇形和圆形纸板的面积比是,即圆形纸片和扇形纸片的面积比是4:1故选:A【点睛】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中8、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可【详解】解:不是中心对称图形,故本选项不合题意;是中心对称图形,故本选项符合题意;不是中心对称图形,故本选项不合题意;是中心对称图形,故本选项符合题意;故选:D【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键9、A【解析】过A作AEOC于E,设A(a,b),求得B(
13、2a,2b),ab16,得到SBCO2ab32,于是得到结论【详解】过A作AEOC于E,设A(a,b),当A是OB的中点,B(2a,2b),反比例函数y(x0)的图象经过RtBOC斜边上的中点A,ab16,SBCO2ab32,点D在反比例函数数y(x0)的图象上,SOCD162=8,SBOD32824,ADB的面积SBOD12,故选:A【点睛】本题主要考查反比例函数的图象与三角形的综合,掌握反比例函数的比例系数k的几何意义,添加合适的辅助线,是解题的关键.10、A【分析】根据不等式的性质进行判断;根据圆心角、弧、弦的关系进行分析即可;根据正多边形的定义进行判断;根据平方根的性质进行判断即可【详
14、解】若m20,则,此命题是假命题;在同圆或等圆中,相等的圆心角所对的弧相等,此命题是假命题;各边相等,各内角相等的多边形是正多边形,此命题是假命题;=4,4的平方根是,此命题是假命题.所以原命题是真命题的个数为0,故选:A【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理二、填空题(每小题3分,共24分)11、【分析】由矩形的性质可得OCOD,于是设DEx,则OE2x,ODOC3x,然后在RtOCE中,根据勾股定理即可得到关于x的方程,解方程即可求出x的值,进而可得CD的长,易证ADCCED,然后利用相似三角形的性质即可求出
15、结果【详解】解:四边形ABCD是矩形,ADC90,BDAC,ODBD,OCAC,OCOD,EO2DE,设DEx,则OE2x,ODOC3x,CEBD,DECOEC90,在RtOCE中,OE2+CE2OC2,(2x)2+52(3x)2,解得:x,即DE,ADE+CDE=90,ECD+CDE=90,ADE=ECD,又ADC=CED=90,ADCCED,即,解得:故答案为:【点睛】本题考查了矩形的性质、勾股定理和相似三角形的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键12、【解析】试题分析:从1到9这九个自然数中一共有5个奇数,任取一个数是奇数的概率是:故答案是考点:概率公式13、 【分
16、析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可【详解】菱形的两条对角线长分别为6cm,8cm,对角线的一半分别为3cm,4cm,根据勾股定理可得菱形的边长为: =5cm,面积S= 68=14cm1故答案为5;14【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键14、1【解析】ABCD, 解得,AO=1,故答案是:1【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键15、【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】关于的一元二次方程有两个
17、实数根解得:故答案为:【点睛】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.16、x12或x11【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1y2,列出关于x1的不等式即可求出结论【详解】解:y(x+k)(xk2)(x1)212kk2,点P(x1,y1)和Q(2,y2)在二次函数y(x+k)(xk2)的图象上,y1(x11)212kk2,y22kk2,y1y2,(x11)212kk22kk2,(x11)21,x12或x11故答案为:x12或x11【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据
18、函数值的取值范围求自变量的取值范围是解决此题的关键17、DAC【分析】由于BAD与BCD是同弧所对的圆周角,故BAD=BCD,故BAC-BCD=BAC-BAD,即可得出答案.【详解】解:BAD=BCD,BAC-BCD=BAC-BAD=DAC,BAC-BCD=DAC=故答案为:DAC.【点睛】本题考查了圆周角的性质,掌握同弧所对的圆周角相等是解题的关键.18、7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OEAB与点E,OFCD于点F根据题意可得:ABODCO,OE=30cm,OF=14cm即解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅
19、对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.三、解答题(共66分)19、 (1);(2)不公平,规则见解析.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再得出得点(x,y)在函数y=-x+5的图象上的情况,利用概率公式即可求得答案;(2)首先分别求得x、y满足xy6则小明胜,x、y满足xy6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.P(小明胜)=,P(小红胜)=,这个游戏不公平。公平的游戏规则为:若x、y满足则小明胜,若
20、x、y满足xy6则小红胜.【点睛】考查游戏公平性,一次函数图象上点的坐标特征,列表法与树状图法,掌握概率=所求情况数与总情况数之比是解题的关键.20、(1)-4;(2)【分析】(1)根据题意利用判别式的意义进行分析,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)由题意利用根与系数的关系得到,进而再利用,接着解关于m的方程确定m的值【详解】解:(1)方程有两个实数根,即的最小整数值为.(2)由根与系数的关系得:,由得:,.【点睛】本题考查根与系数的关系以及根的判别式,注意掌握若,是一元二次方程的两根时,则有21、(20-5)千米. 【解析】分析:作BDAC,设AD=x,在RtA
21、BD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案详解:过点B作BD AC,依题可得:BAD=60,CBE=37,AC=13(千米),BDAC,ABD=30,CBD=53,在RtABD中,设AD=x,tanABD= 即tan30=,BD=x,在RtDCB中,tanCBD= 即tan53=,CD= CD+AD=AC,x+=13,解得,x= BD=12-,在RtBDC中,cosCBD=tan60=,即:BC=(千米),故B、C两地的距离为(20-5)千米. 点睛:此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为
22、解直角三角形的知识,利用三角函数的知识求解22、(1);(2)m1或9或3;(3)或【分析】(1)函数的对称为:xm,顶点p的坐标为:(m,3m2+2m),即可求解;(2)分m1、m1、1m1,三种情况,分别求解即可;(3)由题意得:3m2+2m1,即可求解【详解】解:(1)函数的对称为:xm,顶点p的坐标为:(m,3m2+2m),故答案为:(m,3m2+2m);(2)当m1时,x1时,y5,即548mm2+2m,解得:m3;当m1时,x1,y5,解得:m1或9;1m1时,同理可得:m1或(舍去);故m1或9或3;(3)函数的表达式为:y4x28mxm2+2m,当x1时,ym26m4,则1y2
23、,且函数对称轴在y轴右侧,则1m26m42,解得:3+m1;当对称轴在y轴左侧时,1y2,当x1时,ym2+10m4,则1y2,即1m2+10m42,解得:52m5;综上,3+m1或52m5【点睛】本题考查二次函数的性质,熟练掌握性质是解题的关键,分情况讨论,注意不要漏掉.23、(1)y=10x2100x1,0x2(2)每件商品的售价定为5元时,每个月可获得最大利润,最大月利润是3元【解析】解:(1)设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(6050x)元,总销量为:(200-10x)件,商品利润为:y=(6050x)(20010x)=10x2100x1原售价为每件60元,
24、每件售价不能高于72元,0x2(2)y=10x2100x1=10(x5)2+3,当x=5时,最大月利润y=3答:每件商品的售价定为5元时,每个月可获得最大利润,最大月利润是3元(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式(2)根据题意利用配方法得出二次函数的顶点形式(或用公式法),从而得出当x=5时得出y的最大值24、(1);(2)在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算,理由见解析.【分析】(1)根据题意,列出表格,然后利用概率公式求概率即可;(2)先根据(1)中表格计算出两球数字之和的各种情况对应的概率,然后计算出摸
25、球一次平均获得购书券金额,最后比较大小即可判断.【详解】解:(1)列表如下:第1球第2球12341234由上表可知,共有12种等可能的结果.其中“两球数字之和等于7”有2种,(获得90元购书券).(2)由(1)中表格可知,两球数字之和的各种情况对应的概率如下:数字之和34567获奖金额(元)00306090相应的概率摸球一次平均获得购书券金额为元,在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算.【点睛】此题考查的是求概率问题,掌握用列表法和概率公式求概率是解决此题的关键.25、2【分析】根据DEBC得出ADEABC,然后利用相似三角形的高之比等于相似比即可求出
26、DE的长度【详解】解:DEBC,ADEABC,AGBC,AFDE,BC10,AF1,FG2,DE102【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键26、(1)详见解析;(2)详见解析;(3)4【分析】(1)如图1,连接BC、CD,先证CBACAD,再证CDACAD,可得出ACCD,即可推出结论;(2)过点C作CGAD于点G,则CGA90,证CG垂直平分AD,得出AD2AG,再证ACGCAE,推出AGCE,即可得出AD2CE;(3)取BD中点H,连接OH、OC,则BHDHBD6,OHBD,证RtOECRtBHO,推出OEBH6,OCOA10,则在RtOEC中,求出CE的
27、长,在RtAEC中,可求出AC的长【详解】(1)证明:连接BC、CD,AB是O的直径,ACB90,CAB+CBA90,CAB+CAD90,CBACAD,又CDACBA,CDACAD,ACCD, ;(2)过点C作CGAD于点G,则CGA90,由(1)知ACCD,CG垂直平分AD,AD2AG,AFCF,CADACE,CAD+CAB90,ACE+CAB90,AEC90CGA,ACCA,ACGCAE(AAS),AGCE,AD2CE;(3)取BD中点H,连接OH、OC,则BHDHBD6,OHBD,OHB90CEO,OAOB,OH是ABD的中位线,AD2OH,由(2)知AD2CE,OHCE,OCOB,RtOECRtBHO(HL),OEBH6,OCOAAE+OE4+610,在RtOEC中,CE2OC2OE282,在RtAEC中,AC 4【点睛】本题考查了圆的有关概念及性质、全等三角形的判定与性质、勾股定理等,第证明AEC=90和通过作适当的辅助线构造全等三角形是.解题的关键.