资源描述
2023年人教版中学七7年级下册数学期末测试试卷含解析
一、选择题
1.如图,∠1和∠2不是同位角的是( )
A. B.
C. D.
2.春意盎然,在婺外校园里下列哪种运动不属于平移( )
A.树枝随着春风摇曳 B.值日学生拉动可移动黑板
C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行
3.已知点P的坐标为P(3,﹣5),则点P在第( )象限.
A.一 B.二 C.三 D.四
4.下列命题中假命题有( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行
③点到直线的垂线段叫做点到直线的距离
④过一点有且只有一条直线与已知直线平行
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个 B.4个 C.3个 D.2个
5.将一副三角板按如图放置,如果,则有是( )
A.15° B.30° C.45° D.60°
6.有个数值转换器,原理如图所示,当输入为27时,输出的值是( )
A.3 B. C. D.32
7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是( )
A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1
C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠
8.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3……P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标( )
A.(2020,0) B.(2020,1) C.(2021,0) D.(2021,1)
九、填空题
9.计算:﹣1=___.
十、填空题
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
十一、填空题
11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°.
十二、填空题
12.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为______.
十三、填空题
13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度.
十四、填空题
14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____.
十五、填空题
15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.
十六、填空题
16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________.
十七、解答题
17.计算(1)
(2)
十八、解答题
18.求下列各式中x的值:
(1)
(2)
十九、解答题
19.完成下列证明过程,并在括号内填上依据.
如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.
证明:∵∠1=∠2(已知),∠1=∠4
∴∠2= (等量代换),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B
∴AB∥CD( ).
二十、解答题
20.在平面直角坐标系中有三个点、B(-5,1)、,是的边上任意一点,经平移后得到,点的对应点为,
(1)点到轴的距离是 个单位长度;
(2)画出和;
(3)求的面积.
二十一、解答题
21.已知某正数的两个平方根分别是和的立方根是是的整数部分.
(1)求的值;
(2)求的算术平方根.
二十二、解答题
22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
二十三、解答题
23.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= .
二十四、解答题
24.综合与探究
综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,
操作发现:
(1)如图1.,求的度数;
(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.
实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
二十五、解答题
25.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.
【详解】
解:A、∠1和∠2是同位角,故此选项不符合题意;
B、∠1和∠2是同位角,故此选项不符合题意;
C、∠1和∠2是同位角,故此选项不符合题意;
D、∠1和∠2不是同位角,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.
2.A
【分析】
根据平移的特点可得答案.
【详解】
解:A、树枝随着春风摇曳是旋转运动;
B、值日学生拉动可移动黑板是平移运动;
C、行政楼电梯的升降是平移运动;
D、晚自修后学生两列队伍整齐排列笔直
解析:A
【分析】
根据平移的特点可得答案.
【详解】
解:A、树枝随着春风摇曳是旋转运动;
B、值日学生拉动可移动黑板是平移运动;
C、行政楼电梯的升降是平移运动;
D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;
故选A.
【点睛】
此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.D
【分析】
直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.
【详解】
解:∵点P的坐标为P(3,﹣5),
∴点P在第四象限.
故选D.
【点睛】
本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).
4.B
【分析】
根据平行线的性质和判定,点到直线距离定义一一判断即可.
【详解】
解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;
③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;
④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.
故选B.
【点睛】
本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.
5.C
【分析】
根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.
【详解】
解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,
∵,
∴∠1=60°,
∴∠1=∠E,
∴AC∥DE,
∴∠4=∠C=45°.
故选:C.
【点睛】
本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.
6.B
【分析】
利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值.
【详解】
根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为.
故答案选:B.
【点睛】
此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.
7.A
【分析】
根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得.
【详解】
解:∵在长方形中AD//BC,
∴∠AFG+∠BGF=180°,
又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β,
∴.
故选:A.
【点睛】
本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键.
8.D
【分析】
观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.
【详解】
解析:D
【分析】
观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.
【详解】
解:由题意得:P1(1,1),P2(2,0),P3(2,0),P4(3,1)
P5(5,1),P6(6,0),P7(6,0),P8(7,1),……
由此可以得出规律:每4次翻折为一个循环,若的余数为0,则,(n-1,1);若的余数为1,则,(n,1);若的余数为2,则,(n,0);若的余数为3,则,(n-1,0);
∵2021÷4=505余1,
∴横坐标即为,(2021,1),
故选D.
【点睛】
本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.
九、填空题
9.1
【分析】
先计算算术平方根,然后计算减法.
【详解】
解:原式=2-1=1.
故答案是:1.
【点睛】
本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x
解析:1
【分析】
先计算算术平方根,然后计算减法.
【详解】
解:原式=2-1=1.
故答案是:1.
【点睛】
本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.
十、填空题
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
十一、填空题
11.10
【分析】
根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.
【详解】
解:∵∠B=50°,∠C=70°,
∴∠BAC=1
解析:10
【分析】
根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.
【详解】
解:∵∠B=50°,∠C=70°,
∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,
∵AD是角平分线,
∴∠BAD=∠BAC=×60°=30°,
∵AE是高,
∴∠BAE=90°-∠B=90°-50°=40°,
∴∠DAE=∠BAE-∠BAD=40°-30°=10°.
故答案为:10.
【点睛】
本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.
十二、填空题
12.50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
解析:50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系.
十三、填空题
13.35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折
解析:35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折叠可知:∠DEF=∠DEB,
∴∠BDE=∠DEB,又∠B=30°,
∴∠BDE=(180°-30°)=75°;
当EF∥AC时,
如图,∠C=∠BEF=50°,
由折叠可知:∠BED=∠FED=25°,
∴∠BDE=180°-∠B=∠BED=125°;
如图,EF∥AC,
则∠C=∠CEF=50°,
由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,
则∠CED+50°=180°-∠CED,
解得:∠CED=65°,
∴∠BDE=∠CED-∠B=65°-30°=35°;
综上:∠BDE的度数为35°或75°或125°.
【点睛】
本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.
十四、填空题
14.【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n
解析:【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,
即2n﹣1=11,n=6.
∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.
∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.
故答案为:139.
【点睛】
本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.
十五、填空题
15.(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),
解析:(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),B(2,0),
∴AB=2-1=1,
∴△ABC的面积=×1•h=2,
解得h=4,
点C在y轴正半轴时,点C为(0,4),
点C在y轴负半轴时,点C为(0,-4),
所以,点C的坐标为(0,4)或(0,-4).
故答案为:(0,4)或(0,-4).
【点睛】
本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.
十六、填空题
16.(2021,﹣2)
【分析】
观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.
【详解
解析:(2021,﹣2)
【分析】
观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.
【详解】
解:观察发现,每6个点形成一个循环,
∵A6(6,0),
∴OA6=6,
∵2021÷6=336…5,
∴点A2021的位于第337个循环组的第5个,
∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,
∴点A2021的坐标为(2021,﹣2).
故答案为:(2021,﹣2).
【点睛】
此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.
十七、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;
(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵
∴
∴
∴;
(2)解:∵
∴
∴
∴.
解析:(1);(2)
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;
(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵
∴
∴
∴;
(2)解:∵
∴
∴
∴.
【点睛】
本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.
十九、解答题
19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=
解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=∠4(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠3=∠C (两直线平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.
【点睛】
此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.
二十、解答题
20.(1)2;(2)见解析;(3)2.5
【分析】
(1)根据A点的纵坐标即可求解;
(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B
解析:(1)2;(2)见解析;(3)2.5
【分析】
(1)根据A点的纵坐标即可求解;
(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连接即可;
(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.
【详解】
(1)∵
∴点到轴的距离是2个单位长度
故答案为:2;
(2)如图,和为所求作
(3)S=
=6-1-1-1.5
=2.5
【点睛】
本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
二十一、解答题
21.(1),,c=4;(2)4
【分析】
(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;
(2)代入a、b、c的值求出代数式的值,再求算术平方根即可.
【详解】
解:(1)∵某
解析:(1),,c=4;(2)4
【分析】
(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;
(2)代入a、b、c的值求出代数式的值,再求算术平方根即可.
【详解】
解:(1)∵某正数的两个平方根分别是和
∴
∴
又∵的立方根是3
∴
∴
又∵,c是的整数部分
∴
(2)
故的算术平方根是4.
【点睛】
本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键.
二十二、解答题
22.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
二十三、解答题
23.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质
解析:(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
二十四、解答题
24.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠
解析:(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)如图1 ,,
,
,
;
图1
(2)理由如下:如图2. 过点作,
图2
,
,
,
,
,
,
;
(3),
图3
理由如下:如图3,过点作,
平分,
,
,
又,
,
,
,
,
又 ,
,
.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
二十五、解答题
25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;
[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
∵OM⊥ON,
∴∠CON=90°,
∴∠2+∠3=90°
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∴∠DCB+∠ABC=180°,
∴AB∥CD;
【尝试探究】
如图3,
在△OBC中,∵∠COB=55°,
∴∠2+∠3=125°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=250°,
∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,
∴∠EBC+BCE=360°-250°=110°,
∴∠BEC=180°-110°=70°;
【深入思考】
如图4,
β=2α,
理由如下:∵∠1=∠2,∠3=∠4,
∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,
∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,
∵∠BOC=∠3-∠2=α,
∴β=2α.
【点睛】
本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
展开阅读全文