资源描述
2023年人教版七7年级下册数学期末测试试卷及解析
一、选择题
1.下列四个图形中,和是内错角的是( )
A. B. C. D.
2.如图所示的车标,可以看作由平移得到的是( )
A. B. C. D.
3.点(﹣4,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在同一平面内,下列命题是假命题的是( )
A.过直线外一点有且只有一条直线与已知直线相交
B.已知,,三条直线,若,,则
C.过直线外一点有且只有一条直线与已知直线垂直
D.若三条直线两两相交,则它们有一个或三个交点
5.若的两边与的两边分别平行,且,那么的度数为( )
A. B. C.或 D.或
6.下列算式,正确的是( )
A. B. C. D.
7.如图,AB∥CD,将一块三角板(∠E=30°)按如图所示方式摆放,若∠EFH=25°,求∠HGD的度数( )
A.25° B.30° C.55° D.60°
8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )
A.(2018,1) B.(4034π+1,1) C.(2017,1) D.(4034π,1)
九、填空题
9.若|y+6|+(x﹣2)2=0,则y x=_____.
十、填空题
10.点A关于x轴的对称点的坐标为____________.
十一、填空题
11.如图,是的两条角平分线,,则的度数为_________.
十二、填空题
12.如图,直线a∥b,直角三角形的直角顶点在直线b上,已知∠1=48°,则∠2的度数是___度.
十三、填空题
13.把一张对边互相平行的纸条折成如图所示,是折痕,若,则______.
十四、填空题
14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个.
十五、填空题
15.在平面直角坐标系中,若在轴上,则线段长度为________.
十六、填空题
16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.
十七、解答题
17.计算:
(1)3-(-5)+(-6)
(2)
十八、解答题
18.求下列各式中x的值
(1)81x2 =16
(2)
十九、解答题
19.完成下列证明过程,并在括号内填上依据.
如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.
证明:∵∠1=∠2(已知),∠1=∠4
∴∠2= (等量代换),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B
∴AB∥CD( ).
二十、解答题
20.在平面坐标系中描出下列各点且标该点字母:
(1)点,,,;
(2)点在轴上,位于原点右侧,距离原点2个单位长度;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度.
二十一、解答题
21.阅读材料,解答问题:
材料:∵即,∴的整数部分为2,小数部分为.
问题:已知的立方根是3,的算术平方根是4,c是的整数部分.
(1)求的小数部分.
(2)求的平方根.
二十二、解答题
22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
二十三、解答题
23.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
二十四、解答题
24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.
(1)如图①,若平分,求的度数;
(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.
【详解】
解:A、∠1与∠2不是内错角,选项错误,不符合题意;
B、∠1与∠2不是内错角,选项错误,不符合题意;
C、∠1与∠2是内错角,选项正确,符合题意;
D、∠1和∠2不是内错角,选项错误,不符合题意;
故选:C.
【点睛】
本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.
2.B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平
解析:B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平移得到的,故符合题意;
C、不能经过平移得到的,故不符合题意;
D、不能经过平移得到的,故不符合题意;
故选B.
【点睛】
本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.
3.B
【分析】
根据第二象限的点的横坐标是负数,纵坐标是正数解答.
【详解】
解:点(-4,2)所在的象限是第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.
【详解】
解:、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题;
、在同一平面内,已知,,三条直线,若,,则,是真命题;
、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题;
、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题;
故选:.
【点睛】
本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.
5.A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
6.A
【分析】
根据平方根、立方根及算术平方根的概念逐一计算即可得答案.
【详解】
A.,计算正确,故该选项符合题意,
B.,故该选项计算错误,不符合题意,
C.,故该选项计算错误,不符合题意,
D.,故该选项计算错误,不符合题意,
故选:A.
【点睛】
本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.
7.C
【分析】
先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.
【详解】
解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,
∴∠EHB=∠EFH+∠E=25°+30°=55°,
∵AB∥CD,
∴∠HGD=∠EHB=55°.
故选C.
【点睛】
本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.
8.B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1
解析:B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1).
∵圆向x轴正方向滚动2017圈,
∴圆沿x轴正方向平移个单位长度.
∴圆心沿x轴正方向平移个单位长度.
∴平移后圆心坐标.
故选:B.
【点睛】
本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.
九、填空题
9.36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
解析:36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
十、填空题
10.(2,4)
【分析】
直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.
【详解】
解:点A(2,-4)关于x轴
解析:(2,4)
【分析】
直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.
【详解】
解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4).
故答案为:(2,4).
【点睛】
此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
十一、填空题
11.140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详
解析:140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详解】
△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,
∵BO、CO是∠ABC,∠ACB的两条角平分线.
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.
故填:140°.
【点睛】
本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.
十二、填空题
12.42
【分析】
利用平行线的性质,平角的性质解决问题即可.
【详解】
解:∵∠4=90°,∠1=48°,
∴∠3=90°-∠1=42°,
∵a∥b,
∴∠2=∠3=42°,
故答案为:42.
【点
解析:42
【分析】
利用平行线的性质,平角的性质解决问题即可.
【详解】
解:∵∠4=90°,∠1=48°,
∴∠3=90°-∠1=42°,
∵a∥b,
∴∠2=∠3=42°,
故答案为:42.
【点睛】
本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
十三、填空题
13.【分析】
需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.
【详解】
,
,
是折痕,折叠后,,
,
,
,
故答案为:.
【点睛】
本题考查了平行
解析:
【分析】
需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.
【详解】
,
,
是折痕,折叠后,,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想.
十四、填空题
14.3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是
解析:3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键.
十五、填空题
15.5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查
解析:5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.
十六、填空题
16.(64,4)
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0
解析:(64,4)
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第n列有n个数.则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.
因而第2021个点的坐标是(64,4).
故答案为:(64,4).
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
十七、解答题
17.(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
解析:(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
=2
(2)解:(-1)2-
=1-4×
=1-2
=-1
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
解析:(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
【点睛】
本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.
十九、解答题
19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=
解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=∠4(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠3=∠C (两直线平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.
【点睛】
此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.
二十、解答题
20.(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后
解析:(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可.
【详解】
解:(1)如图 ,
(2)∵点在轴上,位于原点右侧,距离原点2个单位长度,
∴点 ;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,
∴点 .
【点睛】
本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.
二十一、解答题
21.(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
解析:(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
∴的小数部分为;
(2)∵的立方根是3,的算术平方根是4,c是的整数部分,
∴,,,
∴,,,
∴,
的平方根是.
【点睛】
本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.
二十二、解答题
22.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
二十三、解答题
23.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
二十四、解答题
24.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵平分,,
∴,
∴,
∴,
∴;
(2)①∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴;
②∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴.
【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文