资源描述
人教版中学七7年级下册数学期末测试试卷含解析
一、选择题
1.下列说法正确的是()
A.4的平方根是 B.16的平方根是 C.2是的算术平方根 D.是36的算术平方根
2.下列图中的“笑脸”,由如图平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列语句中,是假命题的是( )
A.有理数和无理数统称实数
B.在同一平面内,过一点有且只有一条直线与已知直线垂直
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.两个锐角的和是锐角
5.如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则( )
A. B. C. D.
6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )
A.1个 B.2个 C.3个 D.4个
7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若∠CAF=42°,则∠CDE度数为( )
A.62° B.48° C.58° D.72°
8.一只青蛙在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2021次跳到点( )
A.(6,45) B.(5,44) C.(4,45) D.(3,44)
九、填空题
9.的算术平方根为_______;
十、填空题
10.点A关于x轴的对称点的坐标为____________.
十一、填空题
11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点. 如果∠A=α,那么∠BOC的度数为____________.
十二、填空题
12.已知a∥b,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.
十三、填空题
13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____.
十四、填空题
14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.
十五、填空题
15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________.
十六、填空题
16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.已知,,求下列各式的值:
(1);
(2).
十九、解答题
19.如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由.
证明:∵于点,于点(已知),
∴(____________),
∴(________________________),
∴(________________________),
∵(已知)
∴(____________)
∵,
∴______(______________________________).
∴____________(等量代换)
二十、解答题
20.如图,的三个顶点坐标分别为,,.
(1)在平面直角坐标系中,画出;
(2)将向下平移个单位长度,得到,并画出,并写出点的坐标.
二十一、解答题
21.实数在数轴上的对应点的位置如图所示,.
(1)求的值;
(2)已知的小数部分是,的小数部分是,求的平方根.
二十二、解答题
22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
二十五、解答题
25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据平方根和算术平方根的定义判断即可.
【详解】
解:A.4的平方根是±2,故错误,不符合题意;
B.的平方根是±4,故正确,符合题意;
C.-4没有算术平方根,故错误,不符合题意;
D.-6是36的一个平方根,故错误,不符合题意;
故选B.
【点睛】
本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.B
【分析】
根据直角坐标系的性质分析,即可得到答案.
【详解】
点位于第二象限
故选:B.
【点睛】
本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.
4.D
【分析】
根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可
【详解】
A. 有理数和无理数统称实数,正确,是真命题,不符合题意;
B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;
C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;
D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意
故选D
【点睛】
本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.
5.A
【分析】
分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得.
【详解】
解:如图,分别过、作的平行线和,
,
,
,,
,
,
,
,
又,
,
,
,
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补,④,.
6.B
【分析】
根据平方根与立方根的定义与性质逐个判断即可.
【详解】
(1)是36的一个平方根,则此说法正确;
(2)16的平方根是,则此说法错误;
(3),则此说法正确;
(4),4是有理数,则此说法错误;
(5)当时,无意义,则此说法错误;
综上,正确的说法有2个,
故选:B.
【点睛】
本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.
7.B
【分析】
先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.
【详解】
解:∵DE∥AF,∠CAF=42°,
∴∠CED=∠CAF=42°,
∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,
∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,
故选:B.
【点睛】
本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.
8.D
【分析】
根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次
解析:D
【分析】
根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.
【详解】
解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.
2025-1-3=2021,
故第2021次时青蛙所在位置的坐标是(3,44).
故选:D.
【点睛】
此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.
九、填空题
9.【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答
解析:
【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点.
十、填空题
10.(2,4)
【分析】
直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.
【详解】
解:点A(2,-4)关于x轴
解析:(2,4)
【分析】
直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.
【详解】
解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4).
故答案为:(2,4).
【点睛】
此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
十一、填空题
11.90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
解析:90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
∵在△OBC中,∠BOC=180°-∠OBC-∠OCB,
∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+.
十二、填空题
12.60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b
解析:60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b,
∴∠4=∠3=30°,
∴∠5=180°-∠4-90°=60°,
∴∠2=∠5=60°.
故答案为:60°.
【点睛】
本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.
十三、填空题
13.【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵
解析:【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵△ABC沿直线AC翻折得到△ADC,
∴S△ABC=S△ADC,BD⊥AC,BE=ED,
∴S四边形ABCD=8,
∴,
∵BE=2,AE=3,
∴BD=4,
∴AC=4,
∴CE=AC﹣AE=4﹣3=1.
故答案为1.
【点睛】
本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键.
十四、填空题
14.5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直
解析:
【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直线BC的解析式为,
把,代入得:
,
解得:,
故BC的解析式为,
当时,,
故与轴的交点坐标为;
故答案是.
【点睛】
本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.
十六、填空题
16.(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解
解析:(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(3)个三角形的直角顶点的坐标是;
观察图形不难发现,每3个三角形为一个循环组依次循环,
∴一次循环横坐标增加12,
∵2013÷3=671
∴第(2013)个三角形是第671组的第三个直角三角形,
其直角顶点与第671组的第三个直角三角形顶点重合,
∴第(2013)个三角形的直角顶点的坐标是即.
故答案为:.
【点睛】
本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.
十七、解答题
17.(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式=
解析:(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式= -6+2+1+=.
故答案为:(1)-5;(2) .
【点睛】
本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.
十八、解答题
18.(1)44;(2)48
【分析】
(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;
(2)将a2+b2与ab的值代入原式计算即可求出值.
【详解】
解:(1)把
解析:(1)44;(2)48
【分析】
(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;
(2)将a2+b2与ab的值代入原式计算即可求出值.
【详解】
解:(1)把两边平方得:,
把代入得:,
∴;
(2)∵,,
∴===48.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
十九、解答题
19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【分析】
根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥E
解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【分析】
根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.
【详解】
证明:∵AD⊥BC于点D,EG⊥BC于点G(已知),
∴∠ADC=∠EGC=90°(垂直的定义),
∴AD∥EG(同位角相等,两直线平行),
∴∠1=∠2(两直线平行,内错角相等),
∵∠E=∠1(已知),
∴∠E=∠2(等量代换),
∵AD∥EG,
∴∠E=∠3(两直线平行,同位角相等),
∴∠2=∠3(等量代换),
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【点睛】
本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.
二十、解答题
20.(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐
解析:(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可.
【详解】
解:(1)如图:△ABC即为所求;
(2)如图:即为所求,点A1的坐标为(-2,-1).
【点睛】
本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.
二十一、解答题
21.(1);(2)
【分析】
(1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可;
(2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可
解析:(1);(2)
【分析】
(1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可;
(2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根.
【详解】
解:(1)由图知:,
,,
;
(2),
整数部分是3,
;
的整数部分是6,
,
,
的平方根为.
【点睛】
本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.
二十二、解答题
22.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
二十五、解答题
25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC
解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.
【详解】
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案为45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB与∠GAB的角平分线交于点H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不变,是定值180°.
【点睛】
本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.
展开阅读全文