资源描述
2023年人教版中学七7年级下册数学期末测试试卷及答案
一、选择题
1.下列图形中,有关角的说法正确的是( )
A.∠1与∠2是同位角 B.∠3与∠4是内错角
C.∠3与∠5是对顶角 D.∠4与∠5相等
2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )
A. B. C. D.
3.下列各点中,在第二象限的是( )
A. B. C. D.
4.下列命题是假命题的是( )
A.对顶角相等
B.两直线平行,同旁内角相等
C.过直线外一点有且只有一条直线与已知直线平行
D.同位角相等,两直线平行
5.直线,直线与,分别交于点,,.若,则的度数为( )
A. B. C. D.
6.下列结论正确的是( )
A.的平方根是 B.没有立方根
C.立方根等于本身的数是0 D.
7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ).
A. B.
C. D.
8.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2)把一根长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
A.(1,0) B.(0,1) C.(﹣1,1) D.(﹣1,﹣2)
九、填空题
9.=________.
十、填空题
10.点A(-2,1)关于x轴对称的点的坐标是____________________.
十一、填空题
11.如图中,,,AD、AF分别是的角平分线和高,________.
十二、填空题
12.如图,,,,则的度数为___________.
十三、填空题
13.把一张长方形纸条按如图所示折叠后,若,则_______;
十四、填空题
14.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x的值是_____.
十五、填空题
15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.
十七、解答题
17.(1)计算:
(2)计算:
(3)已知,求的值.
十八、解答题
18.求下列各式中的x.
(1)x2-81=0
(2)(x﹣1)3=8
十九、解答题
19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.
请在下列括号中填上理由:
证明:因为(已知),所以(_______).
又因为(已知),所以,即,
所以_______(同位角相等,两直线平行),所以(_______).
二十、解答题
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
二十一、解答题
21.阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:(1)若的整数部分为,小数部分为,求的值.
(2)已知:,其中是整数,且,求的值.
二十二、解答题
22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”)
(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
二十四、解答题
24.已知,交AC于点E,交AB于点F.
(1)如图1,若点D在边BC上,
①补全图形;
②求证:.
(2)点G是线段AC上的一点,连接FG,DG.
①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明;
②若点G是线段EC上的一点,请你直接写出,,之间的数量关系.
二十五、解答题
25.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.
(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.
(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角、内错角、对顶角的定义判断即可求解.
【详解】
A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;
B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;
C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;
D、∠4与∠5不相等,原说法错误,故此选项不符合题意;
故选:C.
【点睛】
本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.
2.A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移
解析:A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移得到;
C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;
D、图形的大小发生变化,不属于平移得到;
故选:A.
【点睛】
本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.
3.B
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A、点在x轴上,不符合题意;
B、点在第二象限,符合题意;
C、点在第三象限,不符合题意;
D、点在第四象限,不符合题意;
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
真命题就是正确的命题,条件和结果相矛盾的命题是假命题.
【详解】
解:A. 对顶角相等是真命题,故A不符合题意;
B. 两直线平行,同旁内角互补,故B是假命题,符合题意;
C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;
D. 同位角相等,两直线平行,是真命题,故D不符合题意,
故选:B.
【点睛】
本题考查真假命题,是基础考点,掌握相关知识是解题关键.
5.B
【分析】
由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数.
【详解】
解:由题意,根据对顶角相等,则
,
∵,
∴,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出.
6.D
【分析】
根据平方根与立方根的性质逐项判断即可得.
【详解】
A、,8的平方根是,此项错误;
B、,此项错误;
C、立方根等于本身的数有,此项错误;
D、,
,此项正确;
故选:D.
【点睛】
本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.
7.A
【分析】
由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数.
【详解】
解:,,
,
平分交于点,
,
.
故选:A.
【点睛】
本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质.
8.B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(1,1),C(1,2),D(1,2),
∴四边形ABCD的周长为1
解析:B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(1,1),C(1,2),D(1,2),
∴四边形ABCD的周长为10,
2021÷10的余数为1,
又∵AB=2,
∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).
故选:B.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型.
九、填空题
9.6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
解析:6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
十、填空题
10.(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本
解析:(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵A
解析:
【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵AF是的高,∴,
在中,,
∴.
又∵在中,,,
∴,
又∵AD平分,
∴,
∴
.
故答案为:.
【点睛】
本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.
十二、填空题
12.30
【分析】
过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠
解析:30
【分析】
过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.
【详解】
解:过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,
∴∠BCD=∠BCF-∠DCF=70°-40°=30°.
故答案为:30
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.
十三、填空题
13.55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,
解析:55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°,
∴∠BOG+∠B′OG=180°-70°=110°.
∵∠B′OG由∠BOG翻折而成,
∴∠BOG=∠B′OG,
∴∠BOG= =55°.
∵AB∥CD,
∴∠OGD=∠BOG=55°.
故答案为:55°.
【点睛】
本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键.
十四、填空题
14.4
【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.
故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根
解析:4
【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.
故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.
十五、填空题
15.-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>
解析:-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>-1,
∴-1<a<3.
故答案为:-1<a<3.
【点睛】
本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故
解析:
【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
解析:(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
(3)直接利用平方根的定义计算得出答案.
【详解】
解:(1)
,
;
(2)
,
,
;
(3)∵
∴
解得:或.
故答案为:(1)2;(2)6;(3) 或
【点睛】
本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键.
十八、解答题
18.(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(
解析:(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(2)方程整理得:(x-1)3=8,
开立方得:x-1=2,
解得:x=3.
【点睛】
本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.
十九、解答题
19.两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知
解析:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知),
所以,
即,
所以(同位角相等,两直线平行),
所以(两直线平行,同旁内角互补.
故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.
二十、解答题
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
二十一、解答题
21.(1)6;(2)12−
【分析】
(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;
(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.
【详解】
解析:(1)6;(2)12−
【分析】
(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;
(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.
【详解】
解:(1)∵ 3<<4,
∴ a=3,b=-3
∴
=+-3-
=6
(2) ∵1<<2.
又∵10+=x+y,其中x是整数,且0<y<1,
∴x=11, y=−1.
∴x−y=11−(−1)=12−
【点睛】
此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.
二十二、解答题
22.(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的
解析:(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
设大正方形的边长为xcm,
∴ ,
∴
∴大正方形的边长为cm;
(2)设圆的半径为r,
∴由题意得,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵正方形的面积为900cm2,
∴正方形的边长为30cm
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=
解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
二十四、解答题
24.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠
解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A;
(2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【详解】
解:(1)①如图,
②∵DE∥AB,DF∥AC,
∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,
∴∠EDF=∠A;
(2)①∠AFG+∠EDG=∠DGF.
如图2所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;
②∠AFG-∠EDG=∠DGF.
如图所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【点睛】
本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.
二十五、解答题
25.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.
【分析】
第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA
解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.
【分析】
第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.
第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.
【详解】
解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:
∵m⊥n,
∴∠AOB=90°,
∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,
∴∠ABO+∠BAO=90°,
又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,
∴∠BAQ=∠BAC,∠ABQ=∠ABO,
∴∠BAQ+∠ABQ= (∠ABO+∠BAO)=
又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,
∴∠AQB=180°﹣45°=135°.
(2)如图2所示:
①∠P的大小不发生变化,其原因如下:
∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°
∠BAQ+∠ABQ=90°,
∴∠ABF+∠EAB=360°﹣90°=270°,
又∵AP、BP分别是∠BAE和∠ABP的角平分线,
∴∠PAB=∠EAB,∠PBA=∠ABF,
∴∠PAB+∠PBA= (∠EAB+∠ABF)=×270°=135°,
又∵在△PAB中,∠P+∠PAB+∠PBA=180°,
∴∠P=180°﹣135°=45°.
②∠C的大小不变,其原因如下:
∵∠AQB=135°,∠AQB+∠BQC=180°,
∴∠BQC=180°﹣135°,
又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°
∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,
∴∠PBQ=∠ABQ+∠PBA=90°,
又∵∠PBC=∠PBQ+∠CBQ=180°,
∴∠QBC=180°﹣90°=90°.
又∵∠QBC+∠C+∠BQC=180°,
∴∠C=180°﹣90°﹣45°=45°
【点睛】
本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.
展开阅读全文