1、2024年人教版中学七7年级下册数学期末测试(含解析)一、选择题14的算术平方根是()A2B4CD2下列现象属于平移的是()A投篮时的篮球运动B随风飘动的树叶在空中的运动C刹车时汽车在地面上的滑动D冷水加热过程中小气泡变成大气泡3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5将一副三角板按如图放置,如果,则有是( )A15B30C45D606
2、给出下列四个说法:一个数的平方等于1,那么这个数就是1;4是8的算术平方根;平方根等于它本身的数只有0;8的立方根是2其中,正确的是()ABCD7如图,直线ab,直角三角板ABC的直角顶点C在直线b上,若154,则2的度数为( )A36B44C46D548已知点,点,点,是线段的中点,则,在平面直角坐标系中有三个点A(1,),B(,),C(0,1),点P(0,2)关于点A的对称点(即,三点共线,且,关于点的对称点,关于点的对称点,按此规律继续以,三点为对称点重复前面的操作依次得到点,则点的坐标是( )A(0,0)B(0,2)C(2,)D(,2)九、填空题9计算_十、填空题10点关于轴的对称点的
3、坐标为,则的值是_十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题12如图,BC,AD,有下列结论:ABCD;AEDF;AEBC;AMCBND其中正确的有_(只填序号)十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14规定运算:,其中为实数,则_十五、填空题15若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为_.十六、填空题16如图,在平面直角坐标系中,将正方形依次平移后得到正方形,;相应地,顶点A依次平移得到A1,A2,A3,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为_十七、解答题
4、17计算下列各题:(1) (2).十八、解答题18求下列各式中x的值(1)81x2 =16 (2)十九、解答题19填空并完成以下过程:已知:点P在直线CD上,BAP+APD180,12请你说明:EF解:BAP APD180,(_)AB_,(_)BAP_,(_)又12,(已知)3_1,4_2,3_,(等式的性质)AEPF,(_)EF(_)二十、解答题20如图,在平面直角坐标系中,三角形三个顶点的坐标分别为点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点(1)在图中画出平移后的三角形,并写出点的坐标;(2)求三角形的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无
5、理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的因为的整数部分是,将这个数减去其整数部分,差就是小数部分根据以上内容,请解答:已知,其中是整数,求的值二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23已知,ABCD,点E在CD上,点G,
6、F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数二十四、解答题24为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线
7、才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由二十五、解答题25在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由【参考答案】一、选择题1A解析:A【分析
8、】依据算术平方根的定义解答即可【详解】4的算术平方根是2,故选:A【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义2C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽
9、车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象故选:C【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键3D【分析】根据各象限内点的坐标特征解答【详解】解:点(3,-2)所在象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线
10、,那么这两条直线平行对进行判断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5C【分析】根据一副三角板的特征先得到E=60
11、,C=45,1+2=90,再根据已知求出1=60,从而可证得ACDE,再根据平行线的性质即可求出4的度数【详解】解:根据题意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可【详解】解:(1)21,一个数的平方等于1,那么这个数就是1,故错误;4216,4是16的算术平方根,故错误,平方根等于它本身的数只有0,故正确,8的立方根是2,故错误故选:D【点睛】本题考查了立方根,平方
12、根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键7A【分析】根据直角三角形可求出3的度数,再根据平行线的性质2=3即可得出答案【详解】解:如图所示:直角三角形ABC,C=90,1=54,3=90-1=36,ab,2=3=36故选:A【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,求出3的度数是解题的关键8A【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标【详解】解:设,解析:A【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对
13、称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标【详解】解:设,且是的中点,解得:,同理可得:每6个点一个循环,点的坐标是故选A【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出九、填空题911【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简
14、得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键十、填空题104【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键十一、填空题11【分析】如图,先根据三角形的内角和定理
15、求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12【分析】根据平行线的判定与性质分析判断各项正确
16、与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMC解析:【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMCFNM,又BNDFNM,AMCBND,故正确,由条件不能得出AMC90,故不一定正确;故答案为:【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再
17、根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题144【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键十五、填空题15或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,
18、由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-3解析:或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-30,x-30,由题意则有2x+x-3=5,解得:x=3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.十六、填空题16(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,
19、1),A6(5,2),A9(8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,1),A6(5,2),A9(8,3),2131,5132,8133,A3n横坐标为13n,A18横坐标为:13617,A18(17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,A20(19,8)故答案为:(19,8)【点睛】本题主要考查坐标系中点、线段的平移规律在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减十七、解答题17(
20、1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+十八、解答题18(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:解析:(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解
21、】解:(1)方程变形得:,解得:;(2)开立方得:,解得:【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法十九、解答题19已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解】解:BAP+APD180(已知),ABCD(同旁内角互补两直线平行),BAPAP
22、C(两直线平行内错角相等),又12,(已知),3BAP1,4APC2,34(等式的性质),AEPF(内错角相等两直线平行),EF(两直线平行内错角相等)【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键二十、解答题20(1)作图见解析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出解析:(1)作图见解析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC所在矩形面积减去周
23、围三角形面积进而得出答案【详解】解:(1)P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位,如图所示,三角形ABC即为所求,(2)三角形ABC的面积为:451324357【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键二十一、解答题21同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查了无理数的大小解题解析:同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查
24、了无理数的大小解题关键是确定无理数的整数部分即可解决问题二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解
25、:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根
26、据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可解析:(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,
27、QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定
28、与性质定理以及灵活构造平行线是解题的关键二十四、解答题24(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A
29、射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=
30、30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补二十五、解答题25(1)E、CAF;CDE、BAF; (2)
31、20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE
32、90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识