资源描述
2024年人教版七7年级下册数学期末测试试卷含解析
一、选择题
1.如图,与是( )
A.同位角 B.内错角 C.同旁内角 D.对顶角
2.在下列图形中,不能通过其中一个三角形平移得到的是( )
A. B. C. D.
3.已知点P的坐标为P(3,﹣5),则点P在第( )象限.
A.一 B.二 C.三 D.四
4.下列四个命题:①5是25的算术平方根;②的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ).
A.0个 B.1个 C.2个 D.3个
5.如图,直线,被直线所截,,,则的度数为( ).
A.40° B.60° C.45° D.70°
6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( )
A.①② B.①②③ C.②③ D.③
7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与互余的角共有( )
A.0个 B.1个 C.2个 D.3个
8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为( )
A.(a,b) B.(-b+1,a+1)
C.(-a,-b+2) D.(b-1,-a+1)
九、填空题
9.100的算术平方根是_____.
十、填空题
10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______
十一、填空题
11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 _______
十二、填空题
12.如图,,点在上,点在上,则的度数等于______.
十三、填空题
13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度.
十四、填空题
14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.
十五、填空题
15.在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是________.
十六、填空题
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、、、…,那么点的坐标为_______.
十七、解答题
17.计算:
(1)
(2)
(3)
(4)
十八、解答题
18.求下列各式中的的值:
(1);
(2).
十九、解答题
19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.
请在下列括号中填上理由:
证明:因为(已知),所以(_______).
又因为(已知),所以,即,
所以_______(同位角相等,两直线平行),所以(_______).
二十、解答题
20.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).
(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.画出平移后的线段AB.
①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点B的坐标为 ;
(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.
二十一、解答题
21.如图,数轴的正半轴上有,,三点,点,表示数和.点到点的距离与点到点的距离相等,设点所表示的数为.
(1)请你求出数的值.
(2)若为的相反数,为的绝对值,求的整数部分的立方根.
二十二、解答题
22.如图是一块正方形纸片.
(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm.
(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号)
(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?
二十三、解答题
23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.
(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系: ;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
二十四、解答题
24.问题情境
(1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;
问题迁移
(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记.
①如图2,当点在两点之间运动时,请直接写出与之间的数量关系;
②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由.
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.
【详解】
解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,
故选:A.
【点睛】
本题主要考查了同位角的定义,是需要识记的内容,比较简单.
2.D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D
解析:D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.
故选:D.
【点睛】
本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.
3.D
【分析】
直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.
【详解】
解:∵点P的坐标为P(3,﹣5),
∴点P在第四象限.
故选D.
【点睛】
本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).
4.C
【分析】
根据相关概念逐项分析即可.
【详解】
①5是25的算术平方根,故原命题是真命题;
②的平方根是,故原命题是假命题;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;
④两直线平行,同旁内角互补,故原命题是假命题;
故选:C.
【点睛】
本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.
5.A
【分析】
根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.
【详解】
解:如图,
∵AB∥CD,
∴∠2=∠D,
∵∠1=140°,
∴∠D=∠2=180°−∠1=180°−140°=40°,
故选:A.
【点睛】
此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6.D
【分析】
分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.
【详解】
解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;
②∵42=16,∴4是16的算术平方根,故②错误,
③平方根等于它本身的数只有0,故③正确,
④8的立方根是2,故④错误.
故选:D.
【点睛】
本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.
7.B
【分析】
由互余的定义、平行线的性质,利用等量代换求解即可.
【详解】
解:∵斜边与这根直尺平行,
∴∠α=∠2,
又∵∠1+∠2=90°,
∴∠1+∠α=90°,
又∠α+∠3=90°
∴与α互余的角为∠1和∠3.
故选:B.
【点睛】
此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.
8.A
【分析】
据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:观察发现:A1(a,b),A2(
解析:A
【分析】
据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)…
∴依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505……1,
∴点A2021的坐标与A1的坐标相同,为(a,b),
故选:A.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.
九、填空题
9.10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
解析:10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
十、填空题
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
十一、填空题
11.4
【分析】
过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.
【详解】
过点D作DF⊥AC
∵AD是△AB
解析:4
【分析】
过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.
【详解】
过点D作DF⊥AC
∵AD是△ABC的角平分线,DF⊥AC, DE⊥AB,
∴DE=DF,
又三角形的面积的,
即,
解得AC=4
【点睛】
主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.
十二、填空题
12.180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥
解析:180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥CD,
∴∠1=∠AFD,
∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,
∴∠2+360°-∠1-∠3=180°,
∴∠1+∠3-∠2=180°,
故答案为:180°
【点睛】
本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解
十三、填空题
13.35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折
解析:35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折叠可知:∠DEF=∠DEB,
∴∠BDE=∠DEB,又∠B=30°,
∴∠BDE=(180°-30°)=75°;
当EF∥AC时,
如图,∠C=∠BEF=50°,
由折叠可知:∠BED=∠FED=25°,
∴∠BDE=180°-∠B=∠BED=125°;
如图,EF∥AC,
则∠C=∠CEF=50°,
由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,
则∠CED+50°=180°-∠CED,
解得:∠CED=65°,
∴∠BDE=∠CED-∠B=65°-30°=35°;
综上:∠BDE的度数为35°或75°或125°.
【点睛】
本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.
十四、填空题
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的最大整数,
∴N=2,
∴M+N的平方根为:±=±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
十五、填空题
15.(-3,2)
【分析】
根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.
【详解】
∵点到横轴的距离为,到纵轴的距离为,
解析:(-3,2)
【分析】
根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.
【详解】
∵点到横轴的距离为,到纵轴的距离为,
∴|y|=2,|x|=3,
由M是第二象限的点,得:
x=−3,y=2.
即点M的坐标是(−3,2),
故答案为:(−3,2).
【点睛】
此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.
十六、填空题
16.【分析】
结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.
【详解】
结合图像可知,纵坐标每四个点一个循环,
…
解析:
【分析】
结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.
【详解】
结合图像可知,纵坐标每四个点一个循环,
……1,
是第七个周期的第一个点,
每一个周期第一点的坐标为:
,,
,
,
(12,1).
故答案为:(12,1).
【点睛】
本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键.
十七、解答题
17.(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算
解析:(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算;
(4)利用绝对值的性质化简,再进一步合并同类二次根式.
【详解】
解:(1)
=3+2+1
=6;
(2)
=2-3-3
=-4;
(3)
= ;
(4)
=
=.
故答案为(1)6;(2)-4;(3);(4).
【点睛】
本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.
十八、解答题
18.(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
解析:(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
;
(2),
,
,
解得:.
【点睛】
此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.
十九、解答题
19.两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知
解析:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知),
所以,
即,
所以(同位角相等,两直线平行),
所以(两直线平行,同旁内角互补.
故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.
二十、解答题
20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详
解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详解】
解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,
①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;
∵N(3,-2),
∴将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)
∴②点B的坐标为(6,3);
(2)如图,过点B作BE⊥x轴于点E,过点A作AD⊥y轴交EB的延长线于点D,则四边形AOED是矩形,
∵A (0,4),B (6, 3), C(4,0)
∴E (6,0), D (6,4)
∴ AO= 4, CO= 4, EO=6,
∴CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1,
∴
【点睛】
本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键.
二十一、解答题
21.(1);(2)2
【分析】
(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;
(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.
【详解】
解:(1)点.分别表示
解析:(1);(2)2
【分析】
(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;
(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.
【详解】
解:(1)点.分别表示1,,
,
;
(2),
,,
,
,
,
,
的整数部分是8,
.
【点睛】
此题考查了估算无理数的大小,正确估算及是解题的关键.
二十二、解答题
22.(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采
解析:(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.
【详解】
解:(1)由已知AB2=1,则AB=1,
由勾股定理,AC=;
故答案为:.
(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.
;即C圆<C正;
故答案为:<
(3)不能;
由已知设长方形长和宽为3xcm和2xcm
∴长方形面积为:2x•3x=12
解得x=
∴长方形长边为3>4
∴他不能裁出.
【点睛】
本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.
二十三、解答题
23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即
解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.
【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).
又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP平分∠AMH,
∴∠PMH=∠AMH=(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.
∵∠ENH=∠HND.
∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.
∴∠ENQ+(HND+∠BMH)=130°.
∴∠ENQ+∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
二十四、解答题
24.(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
解析:(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.
【详解】
解:(1)过点P作PG∥AB,则PG∥CD,
由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,
又∵∠PBA=125°,∠PCD=155°,
∴∠BPC=360°-125°-155°=80°,
故答案为:80;
(2)①如图2,
过点P作FD的平行线PQ,
则DF∥PQ∥AC,
∴∠α=∠EPQ,∠β=∠APQ,
∴∠APE=∠EPQ+∠APQ=∠α+∠β,
∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;
②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:
过P作PQ∥DF,
∵DF∥CG,
∴PQ∥CG,
∴∠β=∠QPA,∠α=∠QPE,
∴∠APE=∠APQ-∠EPQ=∠β-∠α.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文