收藏 分销(赏)

2024年人教版七7年级下册数学期末测试试卷含解析.doc

上传人:快乐****生活 文档编号:1875742 上传时间:2024-05-10 格式:DOC 页数:26 大小:746.04KB
下载 相关 举报
2024年人教版七7年级下册数学期末测试试卷含解析.doc_第1页
第1页 / 共26页
2024年人教版七7年级下册数学期末测试试卷含解析.doc_第2页
第2页 / 共26页
2024年人教版七7年级下册数学期末测试试卷含解析.doc_第3页
第3页 / 共26页
2024年人教版七7年级下册数学期末测试试卷含解析.doc_第4页
第4页 / 共26页
2024年人教版七7年级下册数学期末测试试卷含解析.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、2024年人教版七7年级下册数学期末测试试卷含解析一、选择题1如图,与是( )A同位角B内错角C同旁内角D对顶角2在下列图形中,不能通过其中一个三角形平移得到的是( )ABCD3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4下列四个命题:5是25的算术平方根;的平方根是-4;经过直线外一点,有且只有一条直线与这条直线平行;同旁内角互补其中真命题的个数是( )A0个B1个C2个D3个5如图,直线,被直线所截,则的度数为( )A40B60C45D706给出下列四个说法:一个数的平方等于1,那么这个数就是1;4是8的算术平方根;平方根等于它本身的数只有0;8的立方根是2其中,正确

2、的是()ABCD7将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与互余的角共有( )A0个B1个C2个D3个8在平面直角坐标系中,对于点P(x,y),我们把点P(y1,x1)叫做点P的伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(a,b),则点A2021的坐标为()A(a,b)B(b1,a1)C(a,b2)D(b1,a1)九、填空题9100的算术平方根是_十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_

3、,b=_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为15,DE3,AB6,则AC的长是 _ 十二、填空题12如图,点在上,点在上,则的度数等于_十三、填空题13在“妙折生平折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为_度十四、填空题14已知M是满足不等式的所有整数的和,N是满足不等式x的最大整数,则MN的平方根为_十五、填空题15在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为

4、,则点的坐标是_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、,那么点的坐标为_十七、解答题17计算:(1) (2)(3) (4)十八、解答题18求下列各式中的的值:(1);(2)十九、解答题19如图,直线,被直线,所截,直线分别交和于点,点在直线上,求证:请在下列括号中填上理由:证明:因为(已知),所以(_)又因为(已知),所以,即,所以_(同位角相等,两直线平行),所以(_)二十、解答题20在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(3,1),点N的坐标为(3,

5、2)(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B画出平移后的线段AB点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求ABC的面积二十一、解答题21如图,数轴的正半轴上有,三点,点,表示数和点到点的距离与点到点的距离相等,设点所表示的数为(1)请你求出数的值(2)若为的相反数,为的绝对值,求的整数部分的立方根二十二、解答题22如图是一块正方形纸片(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm(2)若一圆的面积与这个正方形的面积

6、都是2cm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“”或“”或“”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23已知:直线ABCD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点Q,若H140,求ENQ的度数(可

7、直接运用中的结论)二十四、解答题24问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记如图2,当点在两点之间运动时,请直接写出与之间的数量关系;如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由二十五、解答题25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC

8、=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由【参考答案】一、选择题1A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可【详解】解:根据图象,A与1是两直线被第三条直线所截得到的两角,因而A与1是同位角, 故选:A【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单2D【分析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个

9、三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意故选:D【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第

10、一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4C【分析】根据相关概念逐项分析即可【详解】5是25的算术平方根,故原命题是真命题;的平方根是,故原命题是假命题;经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;两直线平行,同旁内角互补,故原命题是假命题;故选:C【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直

11、线平行,内错角相等解答6D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可【详解】解:(1)21,一个数的平方等于1,那么这个数就是1,故错误;4216,4是16的算术平方根,故错误,平方根等于它本身的数只有0,故正确,8的立方根是2,故错误故选:D【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键7B【分析】由互余的定义、平行线的性质,利用等量代换求解即可【详解】解:斜边与这根直尺平行,=2,又1+2=90,1+=90,又+3=90与互余的角为1和3故选:B【点睛】此题考查的是对平行线的性质

12、的理解,目的是找出与和为90的角8A【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:观察发现:A1(a,b),A2(解析:A【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)依此类推,每4个点为一个循环组依次循环,20214=5051,点A2021

13、的坐标与A1的坐标相同,为(a,b),故选:A【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点九、填空题910【分析】根据算术平方根的定义进行计算,即可得到答案【详解】解:102100,10故答案为:10【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义解析:10【分析】根据算术平方根的定义进行计算,即可得到答案【详解】解:102100,10故答案为:10【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是

14、P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题114【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】

15、过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是ABC的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题12180【分析】根据平行线的性质可得1=AFD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:AB解析:180【分析】根据平行线的性质可得1=A

16、FD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:ABCD,1=AFD,EFC=180-EFD,ECF=180-3,2+ECF+EFC=180,2+360-1-3=180,1+3-2=180,故答案为:180【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题1335或75或125【分析】由于EF不与BC平行,则分EFAB和EFAC,画出图形,结合折叠和平行线的性质求出BDE的度数【详解】解:当EFAB时,BDE=DEF,由折解析:35或75或125【分析】由于

17、EF不与BC平行,则分EFAB和EFAC,画出图形,结合折叠和平行线的性质求出BDE的度数【详解】解:当EFAB时,BDE=DEF,由折叠可知:DEF=DEB,BDE=DEB,又B=30,BDE=(180-30)=75;当EFAC时,如图,C=BEF=50,由折叠可知:BED=FED=25,BDE=180-B=BED=125;如图,EFAC,则C=CEF=50,由折叠可知:BED=FED,又BED+CED=180,则CED+50=180-CED,解得:CED=65,BDE=CED-B=65-30=35;综上:BDE的度数为35或75或125【点睛】本题考查了平行线的性质,三角形内角和,折叠问题

18、,解题的关键是注意分类讨论,画图图形推理求解十四、填空题142【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M10122,N是满足不等式x的解析:2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M10122,N是满足不等式x的最大整数,N2,MN的平方根为:2故答案为:2【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键十五、填空题15(3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值

19、,第二象限内点的横坐标小于零,纵坐标大于零,可得答案【详解】点到横轴的距离为,到纵轴的距离为,解析:(3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案【详解】点到横轴的距离为,到纵轴的距离为,|y|=2,|x|=3,由M是第二象限的点,得:x=3,y=2即点M的坐标是(3,2),故答案为:(3,2)【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零十六、填空题16【分析】结合图象可知,纵坐标每四个点循环一次,而25=46+1,故的纵坐标与的纵坐标相同,根据题中每

20、一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,解析:【分析】结合图象可知,纵坐标每四个点循环一次,而25=46+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,1,是第七个周期的第一个点,每一个周期第一点的坐标为:,(12,1)故答案为:(12,1)【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键十七、解答题17(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立

21、方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)= ;(4)= =故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算十八、解答题18(1);(2)【分析】(1)先将原式变形为形式

22、,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键十九、解答题19两直线平行,同位角相等;两直线平行,同旁内角互补【分析】要证明与互补,需证明,可通过同位角与(或与相等来实现【详解】证明:因为(已知),所以 两直线平行,同位角相等)又因为(已知

23、解析:两直线平行,同位角相等;两直线平行,同旁内角互补【分析】要证明与互补,需证明,可通过同位角与(或与相等来实现【详解】证明:因为(已知),所以 两直线平行,同位角相等)又因为(已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补故答案为:两直线平行,同位角相等;两直线平行,同旁内角互补【点睛】本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定二十、解答题20(1)右,3,上,5(答案不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解【详解析:(1

24、)右,3,上,5(答案不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解【详解】解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;N(3,-2),将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)点B的坐标为(6,3);(2)如图,过点B作BEx轴于点E,过点A作ADy轴交EB的延长线于点D,则四边形AOED是矩形,A (0,4),B (6, 3), C(4

25、,0)E (6,0), D (6,4) AO= 4, CO= 4, EO=6, CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1, 【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键二十一、解答题21(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可【详解】解:(1)点分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代

26、入所求代数式进行计算即可【详解】解:(1)点分别表示1,;(2),的整数部分是8,【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键二十二、解答题22(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解

27、:(1)由已知AB21,则AB1,由勾股定理,AC;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4;即C圆C正;故答案为:(3)不能;由已知设长方形长和宽为3xcm和2xcm长方形面积为:2x3x12解得x长方形长边为34他不能裁出【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)2ME

28、NMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(

29、1)证明:过点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMHGNDGNDDNH180,DNHMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)

30、又AMHHNCMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENHNHT180(两直线平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关

31、系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强二十四、解答题24(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;解析:(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;过P作PQDF,依据平行线的性质可得=QPA,=QPE,即可得到APE=APQ-EPQ=-【详解】解:(1)过点P作PGAB,则PGCD,由平行线的性质可得B+BPG=18

32、0,C+CPG=180,又PBA=125,PCD=155,BPC=360-125-155=80,故答案为:80;(2)如图2,过点P作FD的平行线PQ,则DFPQAC,=EPQ,=APQ,APE=EPQ+APQ=+,APE与,之间的数量关系为APE=+;如图3,APE与,之间的数量关系为APE=-;理由:过P作PQDF,DFCG,PQCG,=QPA,=QPE,APE=APQ-EPQ=-【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论二十五、解答题25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD

33、,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+

34、ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服