1、人教版八年级数学下册期末试卷检测(提高,Word版含解析)一、选择题1函数y中自变量x的取值范围是( )Ax2Bx3Cx2且x3Dx2且x32下列条件:;,能判定是直角三角形的有( )A4个B3个C2个D1个3在四边形中,对角线、相交于点,在下列条件中,;,能够判定四边形是平行四边形的个数有( )A2个B3个C4个D5个4某次数学趣味竞赛共有组题目,某班得分情况如下表全班名学生成绩的众数是( )人数成绩(分)ABCD5若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( )A矩形B一组对边相等,另一组对边平行的四边形C对角线相等的四边形D对角线互相垂直的四边形6如图,在菱形ABCD中
2、,则( )ABCD7ABC中,AB6,BC5,AC7,点D、E、F分别是三边的中点,则DEF的周长为( )A5B9C10D188A,B两地相距20,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 ()与行进时间()之间的关系,有下列说法:甲始终是匀速行进,乙的行进不是匀速的;乙用了4个小时到达目的地;乙比甲先出发1小时;甲在出发4小时后被乙追上,在这些说法中,正确的有( )A1个B2个C3个D4个二、填空题9若在实数范围内有意义,则实数的取值范围是_10一个菱形的边长是,一条对角线长,则此菱形的面积为_11等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为_c
3、m12如图,已知长方形纸片,若将纸片沿折叠,点落在,则重叠部分的面积为_13一次函数的图象与正比例函数的图象平行且经过点,则_14如图,在中,AD,CD分别平分和,若从以下三个条件:;中选择一个作为已知条件,则能使四边形ADCE为菱形的是_(填序号)15如图,在平面直角坐标系中,点A,B的坐标分别为(1,3),(3,3),若直线ykx与线段AB有公共点,则k的取值范围为_16如图,在矩形中,沿直线折叠,使点与点重合,折痕交于点,交于点,连接,则_三、解答题17计算:(1); (2)18有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m当它听
4、到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?19如图,方格纸中每个小正方形的边长均为1,线段和线段的端点均在小正方形的顶点上(1)在方格纸中画以为一边的正方形,点和点均在小正方形的顶点上;(2)在方格纸中画以为一边的菱形,点和点均在小正方形的顶点上,菱形的面积为20,连接,并直接写出线段的长20如图,在矩形中,将矩形折叠,折痕为,使点C与点A重合,点D与点G重合,连接(1)判断四边形的形状,并说明理由;(2)求折痕的长21先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数,使,使得,那么便有:例如:化简解:首先把化为,这里,由于,即
5、:,所以。问题: 填空:,; 化简:(请写出计算过程)22甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为元,乙商场实际付费为元,顾客购买商品金额为元(1)分别求出,与的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由23已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BFDE交线段DE的延长线于F(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,
6、的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:24如图1,直线分别与轴,轴交于,两点,过点作交轴于点(1)请求出直线的函数解析式(2)如图1,取中点,过点作垂于轴的线,分别交直线和直线于点,过点作关于轴的平行线交直线于点,点为直线上一动点,作轴于点,连接,当最小时,求点的坐标及的最小值(3)在图2中,点为线段上一动点,连接,将沿翻折至,连接,是否存在点,使得为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由25如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EFBD,且交AC于点E,交BC于点F,连接BE、DF,且
7、BE平分ABD.(1)求证:四边形BFDE是菱形;求EBF的度数(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EFDE,垂足为点E,交AB于点F,连接DF,交AC于点G请直接写出线段AG,GE,EC三者之间满足的数量关系26如图,ABC和ADE都是等腰三角形,其中ABAC,ADAE,BACDAE(
8、1)如图,连接BE、CD,求证:BECD;(2)如图,连接BD、CD,若BACDAE60,CDAE,AD3,CD5,求BD的长;(3)如图,若BACDAE90,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明【参考答案】一、选择题1A解析:A【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出的范围【详解】解:根据题意得:且,解得:故选:A【点睛】考查了函数自变量的范围,解题的关键是函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次
9、根式时,被开方数非负2C解析:C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论【详解】解:即,ABC是直角三角形,故符合题意;A+B+C=180,C=AB,A+B+AB=180,即A=90,ABC是直角三角形,故符合题意;,设a=,b=,c=,则,ABC不是直角三角形,故不合题意;,C=180=75,故不是直角三角形;故不合题意综上,符合题意的有,共2个,故选:C【点睛】本题主要考查了直角三角形的判定方法如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形3C解析:C【解析】【分析】由平行四边形的
10、判定方法分别对各个条件进行判断即可【详解】解:,根据“两组对边分别平行的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故正确;,根据“两组对边分别相等的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故正确;,不能判定四边形ABCD是平行四边形,故不符合题意;,根据“对角线互相平分的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故正确;由,可得到,根据“两组对边分别平行的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故正确;所以,正确的结论有4个,故选:C【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键4B解析:B【解析】【分析
11、】根据众数的定义进行解答即可【详解】解:70出现了13次,出现的次数最多,则众数是70;故选:B【点睛】此题考查了众数,掌握众数的定义:众数是一组数据中出现次数最多的数是解题的关键5C解析:C【分析】据已知条件可以得出要使四边形EFGH为菱形,应使EHEFFGHG,根据三角形中位线的性质可以求出四边形ABCD应具备的条件【详解】解:连接AC,BD,四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,EFFGGHEH,FGEHDB,HGEFAC,要使EHEFFGHG,BDAC,四边形ABCD应具备的条件是BDAC,故选:C【点睛】此题主要考查了三角形中位线的性质以及菱形
12、的判定方法,正确运用菱形的判定定理是解决问题的关键6C解析:C【解析】【分析】根据菱形的四条边都相等可得AB=BC,然后判断出ABC是等边三角形,再根据等边三角形的性质解答【详解】解:在菱形ABCD中,AB=BC,AC=AB,AB=BC=AC,ABC是等边三角形,ABC=60故选:C【点睛】本题考查了菱形的性质,主要利用了菱形的四条边都相等的性质,熟记性质并判断出ABC是等边三角形是解题的关键7B解析:B【解析】【分析】根据三角形中位线定理求得,进而求得三角形的周长【详解】解:点D,E分别AB、BC的中点,AC7,DEAC3.5,同理,DFBC2.5,EFAB3,DEF的周长DEEFDF9,故
13、选:B【点睛】本题考查了三角形中位线定理,理解三角形中位线定理是解题的关键8A解析:A【分析】根据题意结合图象依次判断即可.【详解】甲始终是匀速行进,乙的行进不是匀速的,正确;乙用了4个小时到达目的地,错误;乙比甲先出发1小时,错误;甲在出发4小时后被乙追上,错误,故选:A.【点睛】此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.二、填空题9【解析】【分析】根据二次根式有意义的条件可直接进行求解【详解】解:由题意得:,解得:;故答案为【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键10A解析:【解析】【分析】首先根据菱形的性质和勾股定
14、理求出另一条对角线的长度,然后利用菱形的面积公式求解即可【详解】如图,四边形ABCD是菱形, , , 故答案为:24【点睛】本题主要考查菱形的性质和面积,勾股定理,掌握菱形的性质和勾股定理是解题的关键11A解析:【解析】【分析】首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了【详解】解:过A,D作下底BC的垂线, 则BE=CF=(16-10)=3cm,在直角ABE中根据勾股定理得到:AB=CD=5,所以等腰梯形的周长=10+16+52=36cm故答案为36【点睛】本题考查等腰梯形的性质、勾股定理注意掌握数形结合思想的应
15、用12A解析:40【分析】先说明AFDCFB可得BFDF,设DFx,在RtAFD中根据勾股定理求得x,再根据AFABBF求得AF,由BC为AF边上的高,最后根据三角形的面积公式求解即可【详解】解:由于折叠可得:AD=BC,D=B,又AFD=CFB,AFDCFB(AAS),DFBF,设DFx,则AF16x,在RtAFD中,(16x)2x282,解得:x6,AFABFB16610,SAFCAFBC108=40故填40【点睛】本题考查了勾股定理的正确运用,在直角三角形AFD中运用勾股定理求出BF的长是解答本题的关键13A解析:4【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代
16、入解析式求出b值即可【详解】解:y=kx+b的图象与正比例函数y=2x的图象平行,k=2,y=kx+b的图象经过点A(1,2),2+b=2,解得b=4,故答案为:4【点睛】本题考查了两条直线相交或平行问题:若直线yk1xb1与直线yk2xb2平行,则k1k2;若直线yk1xb1与直线yk2xb2相交,则由两解析式所组成的方程组的解为交点坐标14B解析:【分析】当BA=BC时,四边形ADCE是菱形只要证明四边形ADCE是平行四边形,DA=DC即可解决问题【详解】解:当时,四边形ADCE是菱形理由:,四边形ADCE是平行四边形,AD,CD分别平分和,四边形ADCE是菱形故答案为:.【点睛】本题考查
17、菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型151k3【分析】把点A、B的坐标分别代入一次函数解析式,求得k的最大值和最小值,易得k的取值范围【详解】解:把(1,3)代入y=kx,得k=3把(3,3)代入y=kx,得3k=3,解解析:1k3【分析】把点A、B的坐标分别代入一次函数解析式,求得k的最大值和最小值,易得k的取值范围【详解】解:把(1,3)代入y=kx,得k=3把(3,3)代入y=kx,得3k=3,解得k=1故k的取值范围为1k3故答案是:1k3【点睛】本题考查了一次函数图象上点的坐标特征,用
18、一次函数图象上点的坐标特征,找出关于k的最值是解题的关键16【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,解析:【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,AFE=EFC,AE=CE四边形ABCD是矩形,B=BCD=D=90,ADBC,cm,AEF=EFC,AEF=AFE,AF=AE=CE,设AF=CF=x,则BF=4-x,解得
19、,cm,EGCG,EGC=D=GCD=90,四边形EGCD是矩形,cm,cm ,cm,cm ,故答案为:【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,等腰三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解三、解答题17(1);(2)【分析】(1)先化简每个二次根式,再合并同类二次根式即可;(2)先计算并化简括号内的,合并结果,再算除法【详解】解:(1)=;(2)=【点睛】解析:(1);(2)【分析】(1)先化简每个二次根式,再合并同类二次根式即可;(2)先计算并化简括号内的,合并结果,再算除法【详解】解:(1)=;(2)=【点睛】本题主要考查
20、了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍18它至少需要5.2s才能赶回巢中【分析】根据题意,构建直角三角形,利用勾股定理解答【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24过A作AECD于E则CE=1解析:它至少需要5.2s才能赶回巢中【分析】根据题意,构建直角三角形,利用勾股定理解答【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24过A作AECD于E则CE=13-3=10,AE=24,在RtAEC中,AC2=CE2+AE2=102+242AC=26,265=5.2(s)答:
21、它至少需要5.2s才能赶回巢中【点睛】本题考查了勾股定理的应用关键是构造直角三角形,同时注意:时间=路程速度19(1)见解析;(2)见解析,【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为,高为的菱形即可,利用勾股定理求出【详解】解:(1)如图,正方形即为所求;(2)如图,菱解析:(1)见解析;(2)见解析,【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为,高为的菱形即可,利用勾股定理求出【详解】解:(1)如图,正方形即为所求;(2)如图,菱形即为所求,【点睛】本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结
22、合的思想解决问题,属于中考常考题型20(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理解析:(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理求得,进而勾股定理求得,根据菱形的面积即可求得【详解】(1)四边形是矩形,根据折叠的性质,可知,四边形是菱形;(2)连接,如图,四边形是矩形,折叠,设,则,在中,即,解得,
23、【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,菱形的性质与判定,灵活晕用勾股定理是解题的关键21(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了【详解】解:(1);(2)【点睛】本题考查了二次根式的化简解析:(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了【详解】解:(1);(2)【点睛】本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方根式的运用及二次根式性质的运用22(1),;(2)当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠【分析】(1
24、)在甲超市购物所付的费用:300元0.8超过300元的部分,在乙超市购物所付的费用:解析:(1),;(2)当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠【分析】(1)在甲超市购物所付的费用:300元0.8超过300元的部分,在乙超市购物所付的费用:2000.85超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可【详解】(1)由题意得,即 ,即(2)当时,由得:,解得:,由得:, 解得:,由得:, 解得:.当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、
25、乙两家商场的实际费用与购买商品金额x之间的函数关系式是本题的关键23(1)30;(2)不变;45;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角解析:(1)30;(2)不变;45;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角和即可求BEF=.(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得ABGADH.从而求得矩形AGFH是正方形,根据正方形的性质证得AHDDIC,从
26、而得出结论【详解】(1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD,又BE=CE,BE=CE=BC,BEC是等边三角形,BCE=60.又BCD=90,=DCE=30.(2)BEF的度数不发生变化.在CED中,CE=CD,CED=CDE=,在CEB中,CE=CB,BCE=,CEB=CBE=,BEF=.(3)过点A作AGDF与BF的延长线交于点G,过点A作AHGF与DF交于点H,过点C作CIDF于点I 易知四边形AGFH是平行四边形,又BFDF,平行四边形AGFH是矩形.BAD=BGF=90,BPF=APD ,ABG=ADH.又AGB=AHD=90,AB=AD,ABGADH.AG
27、=AH ,矩形AGFH是正方形.AFH=FAH=45,AH=AFDAH+ADH=CDI+ADH=90DAH=CDI又AHD=DIC=90,AD=DC,AHDDICAH=DI,DE=2DI,DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型24(1)直线的函数解析式为:;(2)当点的坐标为:时,有最小值;(3)的坐标为:,或,或或【解析】【分析】(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,解析:(1)直线的函数解析式为:;(2)当点的坐标
28、为:时,有最小值;(3)的坐标为:,或,或或【解析】【分析】(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,求出直线的函数解析式;(2)此题需先在图形中补全题目出现的条件,第二问为“造桥问题”,借助两点之间线段最短,先作图,再结合函数知识解决问题;(3)借助有定点、定长可确定圆入手,找到动点的运动轨迹;同时,考虑等腰三角形的腰不确定,应分三种情况讨论,从而确定点的坐标【详解】解:(1)轴轴,则,;过点作交轴于点,;设直线的函数解析式为:,将点,代入得,解得,直线的函数解析式为:(2)轴,轴,轴,直线上所有点的纵坐标都相等;将点在直线上平移至点,使得,连接,
29、交于点,过作交轴于点,连接,则,当位于点时,有最小值;点为线段的中点,轴,直线上所有点的横坐标都为2;,则,设点,代入得,解得,则,则,的最小值为:,设直线的函数解析式为:,将点,代入得,解得,直线的函数解析式为:,设点,将点代入得,当最小时,点的坐标为:(3)存在点,使得为等腰三角形点,是定点,则是定长,沿翻折至,则点是上的动点,(1)当时,如图,点在轴上方,点,;如图,点在轴下方,点,;(2)当时,也在上,点;(3)当时,点也在上,点【点睛】本题考查了一次函数的综合应用,涉及的知识点有:一次函数、直角三角形等,体现了数学的模型思想、转化思想解题的关键是:学生需要对基础知识掌握非常熟练,灵活
30、调动25(1)证明见解析;(2);(3).【分析】(1)由,推出,推出四边形是平行四边形,再证明即可先证明,推出,延长即可解决问题(2)只要证明是等边三角形即可(3)结论:如解析:(1)证明见解析;(2);(3).【分析】(1)由,推出,推出四边形是平行四边形,再证明即可先证明,推出,延长即可解决问题(2)只要证明是等边三角形即可(3)结论:如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题【详解】(1)证明:如图1中,四边形是矩形,在和中,四边形是平行四边形,四边形是菱形平分,(2)结论:理由:如图2中,延长到,使得,连接四边形是菱形,在和中,是等边三角形,在和中,是等边
31、三角形,在中,(3)结论:理由:如图3中,将绕点逆时针旋转得到,四点共圆,在和中,【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题26(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而解析:(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)
32、先求出CDAADE30,进而求出BED90,最后用勾股定理即可得出结论;(3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BECD,BEACDA45,由勾股定理可得2AC2CD2+CE2【详解】证明:(1)BACDAE,BAC+CAEDAE+CAE,即BAECAD;又ABAC,ADAE,ACDABE(SAS),CDBE;(2)如图,连接BE,ADAE,DAE60,ADE是等边三角形,DEAD3,ADEAED60,CDAE,CDAADE6030,由(1)得ACDABE,BECD5,BEACDA30,BEDBEA+AED30+6090,即BEDE,(3)2AC2CD2+CE2,理由如下:连接BE,ADAE,DAE90,DAED45,由(1)得ACDABE,BECD,BEACDA45,BECBEA+AED45+4590,即BEDE,在RtBEC中,BC2BE2+CE2,在RtABC中,AB2+AC2BC2,2AC2CD2+CE2【点睛】此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键