资源描述
八年级数学下册期末试卷检测(提高,Word版含解析)
一、选择题
1.如果二次根式有意义,那么的取值范围是( )
A. B. C. D.
2.以下列各组数为边长,能构成直角三角形的是( )
A.,,2 B.1,2, C.1,, D.4,5,6
3.在中,、分别在、上,若想使四边形为平行四边形,须添加一个条件,这个条件可以是( )
①;②;③;④.
A.①或② B.②或③ C.③或④ D.①或③或④
4.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取( )
应试者
计算机
语言
商品知识
甲
60
70
80
乙
80
70
60
丙
70
80
60
A.甲 B.乙 C.丙 D.任意一人都可
5.三角形三边长分别是6,10,8,则它的最长边上的高为( )
A.6 B.10 C.8 D.4.8
6.如图,在菱形纸片中,,点是边上的一点,将纸片沿折叠,点落在处,恰好经过的中点,则的度数是( )
A. B. C. D.
7.在正方形的对角线上取一点,连结,过点作交于点,将线段EF向右平移m个单位,使得点E落在CD上,F落在BC上,已知AE+EF+CF=24,CD=10,则m的值为( )
A.6 B. C. D.
8.一条公路旁依次有、、三个村庄,甲、乙两人骑自行车分别从村、村同时出发前往村,甲、乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:
①、两村相距;
②甲出发后到达村;
③甲每小时比乙我骑行;
④相遇后,乙又骑行了或时两人相距.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题
9.若二次根式有意义,则x的取值范围是________.
10.如图,菱形ABCD的边长为5cm,正方形AECF的面积为18cm2,则菱形的面积为 ___cm2.
11.如图,每个方格都是边长为1的小正方形,则AB+BC=_____.
12.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为___.
13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.
x/h
0
1
2
3
4
5
y/m
3
3.2
3.4
3.6
3.8
4
根据表格中水位的变化规律,则y与x的函数表达式为____.
14.如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加_____条件,就能保证四边形EFGH是菱形.
15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________.
16.如图,是的中线,把沿折叠,使点落在点处,与的长度比是_______________________.
三、解答题
17.计算:
(1);
(2);
(3);
(4).
18.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?
19.如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:
(1)做线段,使其长度为;
(2)通过计算说明是直角三角形.
20.如图1,在中,于点D,,点E为边AD上一点,且,连接BE并延长,交AC于点F.
(1)求证:;
(2)过点A作交BF的延长线于点G,连接CG,如图2.若,求证:四边形ADCG是矩形.
21.(1)若实数m、n满足等式,求2m+3n的平方根;
(2)已知,求的值.
22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;
方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.
设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.
(1)求k1和b的值;
(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.
23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称.
(1)求直线l2的函数表达式;
(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF.
①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE的长;
②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=3﹣上是否存在一点G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由.
24.在平面直角坐标系中,点A坐标为(0,4),点B坐标为(﹣3,0),连接AB,过点A作AC⊥AB交x轴于点C,点E是线段AO上的一动点.
(1)如图1,当AE=3OE时,
①求直线BE的函数表达式;
②设直线BE与直线AC交于点D,连接OD,点P是直线AC上的一动点(不与A,C,D重合),当S△BOD=S△PDB时,求点P的坐标;
(2)如图2,设直线BE与直线AC的交点F,在平面内是否存在点M使以点A,E,F,M为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请简述理由.
25.如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.
(1)证明:;
(2)当时,六边形周长的值是否会发生改变,请说明理由;
(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.
【参考答案】
一、选择题
1.B
解析:B
【分析】
二次根式有意义,则,据此解题.
【详解】
解:二次根式有意义,则,
,
故选:B.
【点睛】
本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.
2.C
解析:C
【分析】
根据勾股定理的逆定理,判断较小两边的平方和是否等于第三边的平方,则可以判断各个选项的三条线段能否构成直角三角形,本题得以解决.
【详解】
解:A、,故选项中的三条线段不能构成直角三角形;
B、,故选项中的三条线段不能构成直角三角形;
C、,故选项中的三条线段能构成直角三角形;
D、,故选项中的三条线段不能构成直角三角形;
故选:C.
【点睛】
本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.
3.D
解析:D
【解析】
【分析】
由平行四边形的判定定理依次判断即可解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,∠B=∠D,AD//BC,AD=BC,
∴AF//EC
∵AF=EC,
∴四边形AFCE是平行四边形,故①符合题意;
∵AF//EC,,
∴四边形AFCE可能是平行四边形、也可能是等腰梯形,故②不符合题意;
如果∠BAE=∠FCD,则△ABE≌△DFC(ASA)
∴BE=DF,
∴AD-DF=BC-BE,
即AF=CE,
∵AF//CE,
∴四边形AFCE是平行四边形,故③符合题意;
如果∠BEA=∠FCE,
∴AE//CF,
∵AF//CE,
∴四边形AFCE是平行四边形、故④符合题意.
故选D.
【点睛】
本题主要考查了平行四边形的性质与判定.灵活运用平行四边形的性质与判定定理是解答本题的关键.
4.A
解析:A
【解析】
【分析】
分别按照2,3,5的赋权计算甲,乙,丙的平均数,再录取最高分即可.
【详解】
解:根据题意,甲的最终成绩为(分,
乙的最终成绩为(分,
丙的最终成绩为(分,
所以应该录取甲,
故选:.
【点睛】
本题考查的是加权平均数的含义与计算,理解赋权2,3,5的含义是解题的关键.
5.D
解析:D
【分析】
先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高.
【详解】
解:∵三角形三边长分别是6,10,8
∴62+82=102
∴该三角形为直角三角形
∴该三角形的面积:6×8÷2=24
斜边上的高:24×2÷10=4.8
∴这个三角形最长边上的高是4.8.
故选:D.
【点睛】
本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高.
6.A
解析:A
【解析】
【分析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
【详解】
解:连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°−(∠CDE+∠C)=180°−(45°+60°)=75°.
故选:A.
【点睛】
本题考查了折叠问题,菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
7.B
解析:B
【解析】
【分析】
过点E作MN∥CD,交AD于点M,交BC于点N,利用一线三垂直模型证明△AME≌△ENF,列出关于m的式子,求出m即可.
【详解】
解:过点E作MN∥CD,交AD于点M,交BC于点N,
∵E在正方形的对角线上,
∴EM=EE'=m,
∴AM=10﹣m,EN=10﹣m,
∵∠FEN+∠AEM=90°,∠FEN+∠EFN=90°,
∴∠AEM=∠EFN,
在△AME和△ENF中,
,
∴△AME≌△ENF(AAS),
∴FN=ME=m,AE=EF,
CF=2m,
∵AE+EF+CF=24,
∴,
解得m=,
故选:B.
【点睛】
本题主要考查正方形的性质,关键是要作辅助线构造一线三垂直模型,证明全等的三角形,根据勾股定理列出关于m的方程,从而求出m的值.
8.C
解析:C
【分析】
由图像与纵轴的交点可得出A、B两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.
【详解】
解:由图像可知A村、B村相离8km,故①正确;
甲出发后到达村,故②正确;
当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h,故③正确;
当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b
则有:解得
∴s=2t+1
当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.
故答案为C.
【点睛】
本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.
二、填空题
9.
【解析】
【分析】
根据二次根式被开放数为非负数,分式的分母不为零求解即可.
【详解】
解:∵二次根式有意义,
∴2-x>0,解得:x<2.
故答案为:x<2.
【点睛】
本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键.
10.A
解析:24
【解析】
【分析】
由正方形的性质可求AC的长,由勾股定理可求BO的值,可求BD的值,即可求菱形ABCD的面积.
【详解】
解:如图,连接AC,BD交于O,
∵正方形AECF的面积为18cm2,
∴正方形AECF的边长为cm,
∴AC=AE=6(cm),
∴AO=3(cm),
∵四边形ABCD是菱形,
∴AC⊥BD,BO=DO,
∴BO==4(cm),
∴BD=2BO=8(cm),
∴菱形ABCD的面积=AC×BD=24(cm2),
故答案为:24.
【点睛】
本题考查正方形的性质,菱形的性质,勾股定理,熟练运用正方形的性质是本题的关键.
11.A
解析:
【解析】
【分析】
根据勾股定理可以求出AB和BC的长,进而可求出AB+BC的值.
【详解】
解:∵每个方格都是边长为1的小正方形,
∴,
∴AB+BC=.
故答案为.
【点睛】
本题考查了勾股定理.熟练掌握勾股定理是解题的关键.
12.D
解析:5
【分析】
设DE=x,则AE=8-x.先根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,然后在直角三角形ABE中根据勾股定理即可求解.
【详解】
解:设DE=x,则AE=8-x.
根据折叠的性质,得∠EBD=∠CBD.
∵AD∥BC,
∴∠CBD=∠ADB,
∴∠EBD=∠EDB,
∴BE=DE=x.
在直角三角形ABE中,根据勾股定理,得
x2=(8-x)2+16,
解得x=5.
故答案为:5.
【点睛】
本题主要考查了矩形与折叠问题、平行线的性质、等角对等边的性质和勾股定理,难度适中.
13.y=0.2x+3
【分析】
根据记录表由待定系数法就可以求出y与x的函数表达式.
【详解】
解:根据表格信息可知,每小时水位上升0.2m,y是x的的一次函数,
设y与x的函数表达式为y=kx+b,把(0,3)和(1,3.2)代入得:
,
解得:.
故y与x的函数表达式为y=0.2x+3.
故答案为:y=0.2x+3.
【点睛】
考查了待定系数法求一次函数解析式,在解答时确定两个变量是一次函数函数关系是解题关键.
14.A
解析:AC=BD
【分析】
根据中位线的性质易得四边形EFGH为平行四边形,那么只需让一组邻边相等即可,而邻边都等于对角线的一半,那么对角线需相等.
【详解】
解:∵E、F为AD、AB中点,
∴EF为△ABD的中位线,
∴EF∥BD,EF=BD,
同理可得GH∥BD,GH=BD,FG∥AC,FG=AC,
∴EF∥GH,EF=GH,
∴四边形EFGH为平行四边形,
∴当EF=FG时,四边形EFGH为菱形,
∵FG=AC,EF=BD,EF=FG
∴AC=BD,
故答案为:AC=BD.
【点睛】
本题考查菱形的判定,四边相等的四边形是菱形和中位线定理,解题的关键是了解菱形的判定定理,难度不大.
15.【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得
解析:
【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得,
又∵,即
∴,
故答案为:.
【点睛】
本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.
16.【分析】
设BD=CD=x,由题意可知∠ADC=45°,且将ADC沿AD折叠,故,则可运用勾股定理,将用x进行表示,即可得出的值.
【详解】
解:∵点D是BC的中点,设BD=CD=x,则BC=2x
解析:
【分析】
设BD=CD=x,由题意可知∠ADC=45°,且将ADC沿AD折叠,故,则可运用勾股定理,将用x进行表示,即可得出的值.
【详解】
解:∵点D是BC的中点,设BD=CD=x,则BC=2x,
又∵∠ADC=45°,将ADC沿AD折叠,故,=x,
∴,是直角三角形,
根据勾股定理可得:,
∴,
故答案为:.
【点睛】
本题主要考察了折叠问题与勾股定理,解题的关键在于通过折叠的性质,得出直角三角形,并运用勾股定理.
三、解答题
17.(1);(2)-15;(3);(4)12
【分析】
(1)将原式中的二次根式化简为最简二次根式,根据二次根式的加减运算法则计算即可;
(2)根据二次根式的混合运算法则计算即可;
(3)根据零指数幂、
解析:(1);(2)-15;(3);(4)12
【分析】
(1)将原式中的二次根式化简为最简二次根式,根据二次根式的加减运算法则计算即可;
(2)根据二次根式的混合运算法则计算即可;
(3)根据零指数幂、绝对值的意义以及二次根式的混合运算法则计算即可;
(4)根据二次根式的乘除运算法则计算即可.
【详解】
解:(1)原式=
=;
(2)原式=
=
=;
(3)原式=
=;
(4)原式=
=
=.
【点睛】
本题考查了二次根式的混合运算,零指数幂,绝对值的意义等知识点,熟练掌握相关运算法则是解本题的关键.
18.##
【分析】
在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可.
【详解】
解:∵在中,
∴
∴
∵在中
∴
∴
解析:##
【分析】
在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可.
【详解】
解:∵在中,
∴
∴
∵在中
∴
∴.
【点睛】
本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.
19.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据网格特点和勾勾定理作图即可;
(2)根据勾股定理及其逆定理解答即可;
【详解】
解:(1)如图,
AD=;
(2)∵,,,
∴,
∴是直角
解析:(1)见解析;(2)见解析
【解析】
【分析】
(1)根据网格特点和勾勾定理作图即可;
(2)根据勾股定理及其逆定理解答即可;
【详解】
解:(1)如图,
AD=;
(2)∵,,,
∴,
∴是直角三角形.
【点睛】
本题考查了勾股定理及其逆定理,熟练掌握定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之亦成立.
20.(1)见解析;(2)见解析
【分析】
(1)先证,得,又因为,可证;
(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.
【详解】
解析:(1)见解析;(2)见解析
【分析】
(1)先证,得,又因为,可证;
(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.
【详解】
(1)证明:∵,
∴.
∵,,
∴.
∴.
∵,
∴.
(2)证明:∵,
∴,
由(1)知,
∴,
∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴四边形ADCG是平行四边形,
∵,
∴四边形ADCG是矩形.
【点睛】
本题考查了相似三角形的判定与性质,全等的判定和性质、平行四边形、矩形的判定,能利用相似和全等找到边与边的关系是解题的关键.
21.(1);(2)4
【解析】
【分析】
(1)根据绝对值的非负性和算数平方根的非负性得出m和n的值,代入即可求解;
(2)根据二次根式有意义的范围求解x,进而求得y,最后代入即可求解.
【详解】
(1
解析:(1);(2)4
【解析】
【分析】
(1)根据绝对值的非负性和算数平方根的非负性得出m和n的值,代入即可求解;
(2)根据二次根式有意义的范围求解x,进而求得y,最后代入即可求解.
【详解】
(1)∵
∴,
∴
∴16的平方根为;
(2)∵
∴根据使二次根式有意义的条件得
∴x=24,y=-8
∴
∴原式的值为4.
【点睛】
本题考查了绝对值的非负性,算术平方根的非负性,二次根式的定义,关键是掌握使二次根式有意义的条件.
22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析
【分析】
(1)利用待定系数法求解即可;
(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即
解析:(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析
【分析】
(1)利用待定系数法求解即可;
(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即可.
【详解】
解:(1)根据题意,得:
,解得:,
∴方案一所需费用y1与x之间的函数关系式为y1=18x+30,
∴k1=18,b=30;
(2)∵打折前的每次游泳费用为18÷0.6=30(元),
∴k2=30×0.8=24;
∴y2=24x,
当游泳8次时,
选择方案一所需费用:y1=18×8+30=174(元),
选择方案二所需费用:y2=24×8=192(元),
∵174<192,
∴选择方案一所需费用更少.
【点睛】
本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.
23.(1)y=-x+6;(2)①;②,或或,
【分析】
(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;
(2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2
解析:(1)y=-x+6;(2)①;②,或或,
【分析】
(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;
(2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2,作∠DHF=45°,利用AAS证明△ADE≌△HFD,再运用等腰直角三角形性质即可求出答案;
②将D(-1,n)代入y=x+6中,得D(-1,5),过D作DM⊥x轴于M,作FN⊥DM于N,如图3,利用AAS可证得△FDN≌△DEM,进而得出F(4,6),再根据∠DGF=∠DGO分类讨论即可.
【详解】
解:(1)交轴于点,交轴于点,
,,
与关于轴对称,
,
设直线为:,将、坐标代入得
,解得,
直线的函数解析式为:;
(2)①将点代入中,得:
,解得:,
,
如图2,作,
,
,
,,
,
在和中,
,
,
,,
又,,
和均为等腰直角三角形,
,
,
,
是等腰直角三角形,
,
,
.
②将代入中,得:,
,则,,
过作轴于,作于,如图3,
,,
,,
,
在和中,
,
,
,,
,,
,
当点、、三点共线时,如图3,,
设直线的解析式为,
,
,
解得:,
直线的解析式为,
当时,,
,;
如图4,连接DG2,FG2,
过点D作DM⊥OG2,DN⊥FG2,
∵,
∴DM=DN,又DO=DF,
∴(HL),
∴∠ODM=∠FDN,又∠ODN+∠FDN=90°,
∴∠ODM+∠ODN=90°,即∠MDN=90°,
∴四边形DMG2N是正方形,
∴∠OG2F=90°,
设,
,
,
,
解得:,
;
当平分时,如图5,
,,
,
又,
,
设与交于点,
,
,,
,
设直线解析式为,
,,
,
解得:,
直线解析式为,
联立方程组,
解得:,
,;
综上所述,符合条件的的坐标为,或或,.
【点睛】
本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.
24.(1)①直线BE的解析式为;②点P坐标为(,)或(,);(2)存在,点M坐标为(,)或(,)或(,).
【解析】
【分析】
(1)①先求得点E坐标为(0,1),利用待定系数法即可求解;
②过点P作P
解析:(1)①直线BE的解析式为;②点P坐标为(,)或(,);(2)存在,点M坐标为(,)或(,)或(,).
【解析】
【分析】
(1)①先求得点E坐标为(0,1),利用待定系数法即可求解;
②过点P作PG⊥轴交直线BD于点G,利用勾股定理及三角形面积公式求得点C坐标为(,0),利用待定系数法求得直线AC的解析式以及点D坐标,设点P坐标为(,),则点G坐标为(,),利用三角形面积公式即可求解;
(2)分AM为对角线、EM为对角线、FM为对角线三种情况讨论,求解即可.
【详解】
解:(1)∵点A坐标为(0,4),点B坐标为(﹣3,0),
∴OA=4,
∵AE=3OE,
∴OE=1,
∴点E坐标为(0,1),
①设直线BE的解析式为,
∴,
解得,
∴直线BE的解析式为;
②过点P作PG⊥轴交直线BD于点G,
∵点A坐标为(0,4),点B坐标为(﹣3,0),
∴OA=4,OB=3,
∴AB=,
∵AC⊥AB,AO⊥BC,
由勾股定理得:,
∴,
解得:OC=,
∴点C坐标为(,0),
设直线AC的解析式为,
∴,
解得,
∴直线AC的解析式为,
解方程,得,
,
∴点D坐标为(,),
设点P坐标为(,),则点G坐标为(,),
∴PG=,
∵S△BOD=S△PDB,
∴,
即,整理得
解得:或;
当时,;当时,;
∴点P坐标为(,)或(,);
(2)存在,
当AM为对角线时,
∵四边形AEMF是菱形,
∴AE=AF= ME=MF,则∠AEF=∠AFE,
∵∠ABF+∠AFE=90°,∠EBO+∠BEO=90°,∠AEF=∠BEO,
∴∠ABF=∠EBO,
过点F作FH⊥轴于点H,
则AF= FH,
∴点H与点M重合,
∴BM=BA=5,则OM=2,
∴点M坐标为(,);
当EM为对角线时,
∵四边形AEFM是菱形,
∴AE=EF= FM=AM,则∠EAF=∠AFE,
∵∠ABF+∠AFE=90°,∠BAE+∠EAF=90°,
∴∠ABF=∠BAE,
∴BE=EA,
设BE=EA=x,
在Rt△BEO中,EO=4-x,BO=3,
∴,
解得:,
即BE=EA=EF=FM=,
延长MF交轴于点I,
则OE∥FI,即OE是△BFI的中位线,
∴FI=2EO=2(4-)=,OI=OB=3,
∴MI=
∴点M坐标为(,);
当FM为对角线时,
∵四边形AFEM是菱形,
∴MF是线段 AE的垂直平分线,AF=EF= EM=AM,MF∥BC,
∴∠AFM=∠EFM,∠AFM=∠ACB,∠MFE=∠FBC,
∴∠FBC=∠FCB,
过点F作FJ⊥轴于点J,
∴BJ=JC,
∵BC=,
∴OJ=,即点F的横坐标为,
∴,
∴点F的坐标为(,),
根据对称性,点M坐标为(,);
综上,点M坐标为(,)或(,)或(,).
【点睛】
本题考查了一次函数的图象和性质,等腰三角形的判定和性质,菱形的判定和性质,三角形中位线定理,勾股定理等,解题的关键是灵活运用所学知识解决问题.
25.(1)见解析;(2)不变,见解析;(3)能,或
【分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由
解析:(1)见解析;(2)不变,见解析;(3)能,或
【分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.
【详解】
解:折叠后落在上,
平分
,
四边形为菱形,同理四边形为菱形,
四边形为平行四边形,
.
不变.
理由如下:由得
四边形为菱形,
为等边三角
,
为定值.
记与交于点.
当六边形的面积为时,
由得
记与交于点
,
同理
即
化简得
解得,
∴当或时,六边形的面积为.
【点睛】
此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.
展开阅读全文