资源描述
部编版八年级数学下册期末试卷测试卷(解析版)
一、选择题
1.已知二次根式,则的最小值是( )
A.0 B.-1 C. D.
2.下列各组数中,不能作为直角三角形的三边长的是( )
A.5,4,3 B.5,12,13 C.6,8,10 D.6,4,7
3.如图,E是的边延长线上一点,连结交于点F,连结,,添加以下条件,不能判定四边形为平行四边形的是( )
A. B. C. D.
4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数
方差
要从中选择一名发挥稳定的运动员去参加比赛,应该选择( )A.甲 B.乙
C.丙 D.丁
5.三角形三边长分别是6,10,8,则它的最长边上的高为( )
A.6 B.10 C.8 D.4.8
6.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
A.120° B.130° C.140° D.150°
7.如图,在矩形ABCD中,,对角线AC,BD相交于点O,M为AO的中点,交OB于E,交AD于F,若,则EF的值为( )
A.3 B. C. D.4
8.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是( )
A. B.10
C. D.12
二、填空题
9.已知,则________.
10.如图,菱形的面积为120 cm2,正方形的面积为50 cm2时,则菱形的边长为____cm.
11.在中,,,,则线段AC的长为________.
12.如图,将长方形沿直线折叠,顶点恰好落在边上点处,已知,,则边的长为_________.
13.若点P(a+1,2a-3)一次函数y=-2x+1的图象上,则a=_______.
14.如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.
15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________.
16.如图,长方形纸片ABCD中,AB=8cm,BC=17cm,点O在边BC上,且OB=10cm.将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _____cm.
三、解答题
17.计算:
(1);
(2);
(3);
(4).
18.去年某省将地处,两地的两所大学合并成了一所综合性大学,为了方便,两地师生的交往,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)
19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的,请你根据所学的知识回答下列问题:
(1)判断的形状,并说明理由:
(2)求的面积.
20.如图,在平行四边形ABCD中,∠ABC的平分线BE交AD于点E,点F是BC边上的一点,且BF=AB,连接EF.
(1)求证:四边形ABFE是菱形;
(2)连接AF,交BE于点O,若AB=5,BE+AF=14,求菱形ABFE的面积.
21.观察下列各式:
化简以上各式,并计算出结果;
以上式子与其结果存在一定的规律.请按规律写出第个式子及结果.
猜想第个式子及结果(用含(的整数)的式子写出),并对猜想进行证明.
22.某电影院普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设看电影x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;
(3)请根据函数图象,提出1条合算的消费建议.
23.如图1,在中,为的中点,连结.过点作射线为射线上一动点.
(1)求的长和的面积;
(2)如图2,连结,在点的运动过程中,若为等腰三角形,求所有满足条件的的长;
(3)如图3,连结交于点,连结,作点关于的对称点,当点恰好落在的边上时,连结,请直接写出的面积.
24.如图1,直线分别与轴,轴交于,两点,,,过点作交轴于点.
(1)请求出直线的函数解析式.
(2)如图1,取中点,过点作垂于轴的线,分别交直线和直线于点,,过点作关于轴的平行线交直线于点,点为直线上一动点,作轴于点,连接,,当最小时,求点的坐标及的最小值.
(3)在图2中,点为线段上一动点,连接,将沿翻折至,连接,,是否存在点,使得为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由.
25.如图,已知点A(a,0),点C(0,b),其中a、b满足|a﹣8|+b2﹣8b+16=0,四边形OABC为长方形,将长方形OABC沿直线AC对折,点B与点B′对应,连接点C交x轴于点D.
(1)求点A、C的坐标;
(2)求OD的长;
(3)E是直线AC上一个动点,F是y轴上一个动点,求△DEF周长的最小值.
【参考答案】
一、选择题
1.D
解析:D
【分析】
直接利用二次根式得定义得出的取值范围,进而得出答案.
【详解】
解:∵二次根式有意义,
∴,
解得:,
故的最小值为,
故选:D.
【点睛】
本题主要考查二次根式的定义,正确得出的取值范围是解题的关键.
2.D
解析:D
【分析】
根据勾股定理逆定理,只要验证两较小边的平方和等于最长边的平方即可.
【详解】
解:A、∵,
∴5,4,3可以作为直角三角形的三边长,故此选项不符合题意;
B、∵,
∴5,12,13可以作为直角三角形的三边长,故此选项不符合题意;
C、∵,
∴6,8,10可以作为直角三角形的三边长,故此选项不符合题意;
D、∵,
∴6,4,7不可以作为直角三角形的三边长,故此选项符合题意;
故选:D.
【点睛】
本题主要考查了勾股定理逆定理,判断三角形是否为直角三角形,已知三角形的三边长,只要利用勾股定理逆定理加以判断即可.
3.B
解析:B
【解析】
【分析】
根据平行四边形的判定定理逐项推理证明即可.
【详解】
解:∵ DE∥BC,
∴∠DEF=∠CBF,
∠DEF=∠CBF,
在△DEF与△CBF中,
∴△DEF≌△CBF(ASA),
∴DF=CF,
∵EF=BF,
∴四边形BCED为平行四边形,故A不符合题意;
∵AE∥BC,
∴∠AEB=∠CBF,
∵∠AEB=∠BCD,
∴∠CBF=∠BCD,
∴CF=BF,
同理,EF=DF,
∴不能判定四边形BCED为平行四边形;
故B符合题意;
∵四边形ABCD是平行四边形,
∴ .AD∥BC,AB∥CD,
∴DE∥CE,∠ABD=∠CDB,
又∵∠ABD=∠DCE,
∴∠DCE=∠CDB,
∴BD∥CE,
∴四边形BCED为平行四边形,
故C不符合题意;
∵AE∥BC,
∴∠DEC+∠BCE=∠EDB+∠DBC=180°,
∵∠AEC=∠CBD,
∴∠BDE=∠BCE,
∴四边形BCED为平行四边形,
故D不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.
4.B
解析:B
【解析】
【分析】
首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.
【详解】
解:因为<<<,
所以乙最近几次选拔赛成绩的方差最小,
所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.
故选:B.
【点睛】
此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.D
解析:D
【分析】
先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高.
【详解】
解:∵三角形三边长分别是6,10,8
∴62+82=102
∴该三角形为直角三角形
∴该三角形的面积:6×8÷2=24
斜边上的高:24×2÷10=4.8
∴这个三角形最长边上的高是4.8.
故选:D.
【点睛】
本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高.
6.C
解析:C
【解析】
【分析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.
【详解】
∵四边形ABCD是菱形,
∴OB=OD,AC⊥BD,∠ADC=∠ABC,
∵DH⊥AB,
∴OH=OB=BD,
∵∠DHO=20°,
∴∠OHB=90°﹣∠DHO=70°,
∴∠ABD=∠OHB=70°,
∴∠ADC=∠ABC=2∠ABD=140°,
故选C.
【点睛】
本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.
7.C
解析:C
【解析】
【分析】
由三角形中位线定理可得AB=2ME,OD=2MF,可得AB=OD,由矩形的性质可得OD=OA=OB=AB,可证△ABO是等边三角形,可得AE⊥BO,由直角三角形的性质可求EF的长.
【详解】
解:如图,连接AE,
∵M为AO的中点,ME∥AB,MF∥OD,
∴ME是△ABO的中位线,MF是△AOD的中位线,
∴AB=2ME,OD=2MF,
∵ME=MF,
∴AB=OD,
∵四边形ABCD是矩形,
∴AC=BD,AO=OC,OB=OD,
∴OD=OA=OB,
∴AB=AO=BO=3,
∴△ABO是等边三角形,BD=6,
∴AD=,
∵△ABO是等边三角形,点E是BO中点,
∴AE⊥BO,
又∵点F是AD的中点,
∴EF=AD=,
故选:C.
【点睛】
本题考查了矩形的性质,三角形中位线定理,等边三角形的判定和性质等知识,证明△AOB是等边三角形是解题的关键.
8.B
解析:B
【解析】
【分析】
点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.
【详解】
解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,
∵直线AB的解析式为y=-x+7,
∴直线CC″的解析式为y=x-1,
由
解得,
∴直线AB与直线CC″的交点坐标为K(4,3),
∵K是CC″中点,C(1,0),
设C″坐标为(m,n),
∴,解得:
∴C″(7,6).
连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,
△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=
故答案为10.
【点睛】
本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.
二、填空题
9.
【解析】
【分析】
根据二次根式的非负性求出x,y,即可得解;
【详解】
∵,
∴,
∴,
∴,
∴;
故答案是.
【点睛】
本题主要考查了利用二次根式的非负性化简求值,准确计算是解题的关键.
10.B
解析:13
【解析】
【分析】
连接BD、AC、EF,BD与AC交于点O,由题意易得B、E、F、D在同一条直线上,则有,然后根据菱形和正方形的面积及勾股定理可进行求解.
【详解】
解:连接BD、AC、EF,BD与AC交于点O,如图所示:
∵四边形是菱形、四边形是正方形,
∴点B、E、F、D在同一条直线上,
∴,
∵菱形的面积为120 cm2,正方形的面积为50 cm2,
∴,
∴,
∴,
在Rt△AOB中,由勾股定理可得cm,
故答案为13.
【点睛】
本题主要考查菱形与正方形的性质,熟练掌握菱形与正方形的性质是解题的关键.
11.
【解析】
【分析】
根据勾股定理即可得出答案
【详解】
解:∵,,,
∴
故答案为:
【点睛】
本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
12.D
解析:10
【分析】
设边的长为,首先根据矩形的性质得出,进而求出DE的长度,然后根据折叠的性质得出,然后根据勾股定理求解即可.
【详解】
设边的长为,
∵四边形ABCD是矩形,
∴.
,
.
由折叠的性质可知,
.
在中,
∵,
,
解得,
∴边的长为,
故答案为:10.
【点睛】
本题注意考查矩形与折叠问题,掌握勾股定理以及矩形、折叠的性质是关键.
13.
【分析】
把P点的坐标代入一次函数,即可求得a的值.
【详解】
∵点P(a+1,2a-3)一次函数y=-2x+1的图象上,
∴2a-3=-2(a+1)+1,
∴a=.
故答案为:.
【点睛】
考查了一次函数图象上点的坐标特征;解题关键是抓住:点在函数解析式上,点的横坐标就满足这个函数解析式.
14.A
解析:
【分析】
结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AO=BO=CO=DO,
∵AE垂直平分OB于点E,
∴AO=AB=4,
∴AO=OB=AB=4,
∴BD=8,
在Rt△ABD中,AD==.
故答案为.
【点睛】
本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.
15.【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得
解析:
【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得,
又∵,即
∴,
故答案为:.
【点睛】
本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.
16.16
【分析】
过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB=10cm.在 中,由勾股定理,可得OE=6cm,即可求解.
【详解】
解:如图,过点F作FE
解析:16
【分析】
过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB=10cm.在 中,由勾股定理,可得OE=6cm,即可求解.
【详解】
解:如图,过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,
在长方形ABCD中,CD=AB=8cm,
根据题意得:OF=OB=10cm.
在 中,由勾股定理得:
,
∴AF=BE=OB+OE=16cm.
故答案为:16
【点睛】
本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键.
三、解答题
17.(1)1;(2)2;(3)1;(4).
【分析】
根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.
【详解】
解:(1)原式,
,
,
;
(2
解析:(1)1;(2)2;(3)1;(4).
【分析】
根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.
【详解】
解:(1)原式,
,
,
;
(2)原式,
;
(3)原式,
,
;
(4)原式,
,
,
.
【点睛】
本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式,解题的关键是掌握二次根式的混合运算.
18.计划修筑的这条公路不会穿过公园.理由见解析
【分析】
先过点C作CD⊥AB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案.
【详解】
解析:计划修筑的这条公路不会穿过公园.理由见解析
【分析】
先过点C作CD⊥AB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案.
【详解】
解:如图所示,过点C作CD⊥AB,垂足为点D,
由题意可得∠CAB=30°,∠CBA=45°,
在Rt△CDB中,∠BCD=45°,
∴∠CBA=∠BCD,
∴BD=CD.
在Rt△ACD中,∠CAB=30°,
∴AC=2CD.设CD=DB=x,
∴AC=2x.
由勾股定理得AD=.
∵AD+DB=2.732,
∴x+x=2.732,
∴x≈1.
即CD≈1>0.7,
∴计划修筑的这条公路不会穿过公园.
【点睛】
本题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角和含30度角的直角三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.
19.(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直
解析:(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直角三角形,理由:
正方形小方格边长为1,
,,.
,
是直角三角形;
(2)的面积,
故的面积为5.
【点睛】
本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及勾股定理的逆定理.
20.(1)见解析;(2)24
【分析】
(1)证,则,,得四边形是平行四边形,再由,即可得出结论;
(2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可.
【详解】
(1)证明:四边形是平行
解析:(1)见解析;(2)24
【分析】
(1)证,则,,得四边形是平行四边形,再由,即可得出结论;
(2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可.
【详解】
(1)证明:四边形是平行四边形,
,
,
的平分线交于点,
,
,
,
,
,,
四边形是平行四边形,
又,
平行四边形是菱形;
(2)解:由(1)得:四边形是菱形,
,,,
,
,
在中,由勾股定理得:,
即,
解得:或,
当时,,则,;
当时,,则,;
菱形的面积.
【点睛】
本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.
21.;;第个式子为及结果为,证明见解析
【解析】
【分析】
(1)分别把每个式子的第二项进行分母有理化,观察结果;
(2)根据(1)的结果写出第5个式子及结果;
(3)根据(1)的规律可得,然后分母有理
解析:;;第个式子为及结果为,证明见解析
【解析】
【分析】
(1)分别把每个式子的第二项进行分母有理化,观察结果;
(2)根据(1)的结果写出第5个式子及结果;
(3)根据(1)的规律可得,然后分母有理化,求出结果即可.
【详解】
解:
第个式子为及结果为
证明:左边
右边
成立
【点睛】
本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.
22.(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算;
解析:(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算;当15<x<45时,银卡消费更划算;当x=45时,金卡,银卡的总费用相同,均比普通票划算;当x>45时,金卡消费更划算.
【分析】
(1)弄清题意,结合图象易知普通票为正比例函数图象,银卡为一次函数图象,依题意写出即可;
(2)银卡函数关系式y=10x+150,令x=0时即可求出A点坐标,令银卡函数与普通卡函数关系式相等即可找到B点坐标,令银卡函数关系式y=600,即可找到C点坐标;
(3)结合图象分当0<x<15时,x=15时,15<x<45时,x=45时,x>45时五段,依次分析出最合算的消费建议即可.
【详解】
解:(1)由题意得,选择银卡时,y与x之间的函数关系式为:y=10x+150;
选择普通票时,y与x之间的函数关系式为:y=20x;
(2)由题意可得:
当y=10x+150,x=0时,y=150,
故A(0,150),
当10x+150=20x,
解得:x=15,
则y=300,
故B(15,300),
当y=10x+150=600时,
解得:x=45,
故C(45,600);
(3)如图所示,由A、B、C三点坐标可得:
当0<x<15时,选择普通消费更划算;
当x=15时,银卡,普通票总费用相同,均比金卡划算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡,银卡的总费用相同,均比普通票划算;
当x>45时,金卡消费更划算.
【点睛】
本题考查一次函数应用,重点掌握一次函数的基本性质熟练应用,能结合实际灵活运用是解题的关键.
23.(1)20,150;(2)7或;(3)或42.
【分析】
(1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积;
(2)分三种情况进行讨论;当CD=C
解析:(1)20,150;(2)7或;(3)或42.
【分析】
(1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积;
(2)分三种情况进行讨论;当CD=CP时,作CE⊥AP于E,根据S△ABC=ABCD=BCCE可得CE的长,CE>CP,而根据直角三角形斜边大于直角边可得该情况不成立;当CD=DP时,作DF⊥AP于F,延长FD交BC于G,根据全等三角形的判定可得△AFD≌△BGD,从而得到DF=DG,根据S△CDB=CDBD=DGBC,可得DF=DG=12,根据勾股定理可得AF和PF的长,即可得到AP的长;当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G,设AP=x,可得PE=x-7,根据勾股定理可得,,列式即可求得AP的值.
(3)分三种情况进行讨论:①当A´落在CD上时,作GE⊥CD于点E,根据等腰三角形的性质可得CD⊥AB,可得sin∠DAC=,cos∠DAC=,根据题意可知DG是AA´的垂直平分线,从而得到△ADG≌△A´DG(SAS),A´C=5,即可得到sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=,设A´G=x,则CG=25-x,GE=x,A´E=x,可得CE=x+5,利用勾股定理可得GE的长,根据S△A´CG=A´CEG即可得解;②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F,可得DF为中位线,所以DF∥BA´,且DF=BA´,根据等腰三角形性质及中位线性质可得sin∠ABA´=,cos∠ABA´=,从而求得BA´的长,BA´的长,根据矩形的判定可得四边形FA´EG为矩形,从而得到GE的长,根据S△A´CG=A´CEG即可得解;③当A´落在BD上时,会得到A´与B点重合,所以该情况不存在.
【详解】
解:(1)∵,,D为的中点,
∴BD=AB=15,CD⊥AB,
∴∠CDB=90°,
∴CD=,
∴S△ACD=CDAD=×20×15=150;
(2)当CD=CP时,如图,作CE⊥AP于E,
∴S△ABC=ABCD=BCCE,
∴×30×20=×25CE,
解得 CE=24,
∵CE>CD,
即CE>CP,
∴CD=CP不成立,
当CD=DP时,作DF⊥AP于F,延长FD交BC于G,
∵AF∥BC,
∴∠FAD=∠B,
∵∠AFD=∠BGD=90°,AD=BD,
∴△AFD≌△BGD(AAS),
∴DF=DG,
∵S△CDB=CDBD=DGBC,
∴×20×15=×25DG
∴DF=DG=12,
∴AF=,
在Rt△DFP中,PF=,
∴AP=PF-AF=16-9=7,
当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G,
由上述过程可得 AF=9,
∴CG=BC-BG=25-9=16,
设AP=x,
∴PE=PF-FE=AF+AP-FE=9+x-16=x-7,
当PD=PC时,在Rt△PDF中,
,
在Rt△PCE中,,
∴=,
解得x=,
∴AP=,
综上所述,AP=7或.
(3)①当A´落在CD上时,作GE⊥CD于点E,
则S△A´CG=A´CEG,
∵AC=BC,D为AB中点,
∴CD⊥AB,
∵AC=BC=25,AB=30,
∴BD=AD=15,CD=20,
sin∠DAC=,cos∠DAC=,
由题知A,A´关于DG对称,
∴DG是AA´的垂直平分线,
∵DG=DG,∠ADG=∠A´DG,AD=A´D=15,
∴△ADG≌△A´DG(SAS),A´C=5,
∴sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=,
设A´G=x,则CG=25-x,
∴GE=x,A´E=x,
∴CE=x+5,
∵△CGE为直角三角形,
∴,
解得x=,
∴GE=,
∴S△A´CG=A´CEG=×5×=;
②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F,
则S△A´CG=A´CEG,
∵A,A´关于DG对称,
∴点F为AA´的中点,
∵D为AB的中点,
则在△ABA´中,DF为中位线,
∴DF∥BA´,且DF=BA´,
∵∠AFD=90°,
∴∠AA´B=90°,
∵CD=20,BC=25,AB=30
∴sin∠ABA´=,cos∠ABA´=,
∴BA´=30×=24,
∴A´C=25-18=7,
∵AA´⊥BC,GE⊥BC,
∴GE∥AA´,
∵DF∥BA´,
∴FG∥A´E,
∵∠AA´C=90°,
∴四边形FA´EG为矩形,
∴GE=FA´=AA´=×24=12,
∴S△A´CG=A´CEG=×7×12=42.
③当A´落在BD上时,此时DA=DA´=15,
∴A´与B点重合,
∵AP∥ BC,
∴该情况不存在,
综上所述,的面积为或42.
【点睛】
本题考查了等腰三角形的性质,勾股定理,全等三角形的判定与性质,矩形的判定与性质等知识点.解题的关键是运用分类讨论思想进行解题.
24.(1)直线的函数解析式为:;(2)当点的坐标为:时,有最小值;(3)的坐标为:,或,或或.
【解析】
【分析】
(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,
解析:(1)直线的函数解析式为:;(2)当点的坐标为:时,有最小值;(3)的坐标为:,或,或或.
【解析】
【分析】
(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,求出直线的函数解析式;
(2)此题需先在图形中补全题目出现的条件,第二问为“造桥问题”,借助两点之间线段最短,先作图,再结合函数知识解决问题;
(3)借助有定点、定长可确定圆入手,找到动点的运动轨迹;同时,考虑等腰三角形△的腰不确定,应分三种情况讨论,从而确定点的坐标.
【详解】
解:(1)轴轴,,,
,,则,
;
过点作交轴于点,
,,
,
;
设直线的函数解析式为:,将点,代入得,
,解得,,
直线的函数解析式为:.
(2)
轴,轴,
轴,直线上所有点的纵坐标都相等;
将点在直线上平移至点,使得,连接,交于点,过作交轴于点,连接,
则,,当位于点时,有最小值;
点为线段的中点,,,
,,
轴,
,,直线上所有点的横坐标都为2;
,,
,则,
设点,
代入得,,解得,,则,,
,,则,
的最小值为:,
设直线的函数解析式为:,将点,,,代入得,
,解得,
直线的函数解析式为:,
设点,将点代入得,,
当最小时,点的坐标为:.
(3)存在点,使得△为等腰三角形.
点,是定点,则是定长,沿翻折至△,则点是上的动点,
(1)当时,
①如图,点在轴上方,点,;
②如图,点在轴下方,点,;
(2)当时,也在上,点;
(3)当时,点也在上,点.
【点睛】
本题考查了一次函数的综合应用,涉及的知识点有:一次函数、直角三角形等,体现了数学的模型思想、转化思想.解题的关键是:学生需要对基础知识掌握非常熟练,灵活调动.
25.(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4.
【分析】
(1)根据非负数的性质可得a、b的值,由此可得问题的答案;
(2)根据长方形的性
解析:(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4.
【分析】
(1)根据非负数的性质可得a、b的值,由此可得问题的答案;
(2)根据长方形的性质和折叠的性质可得A=AB=4,C=CB=8,∠=∠B=90°,设OD=x,CD=y,根据勾股定理列方程,求解可得答案;
(3)作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,由翻折的性质得D、H、G点的坐标,当点H,F,E,G四点共线时,DE+DF+EF长取得最小值,由此可得答案.
【详解】
解:(1)∵|a﹣8|+b2﹣8b+16=0,
∴|a﹣8|+(b﹣4)2=0,
∵|a﹣8|≥0,(b﹣4)2≥0,
∴a﹣8=0,b﹣4=0,
∴a=8,b=4,
∴A点的坐标为(8,0),C点的坐标为(0,4);
(2)∵A点的坐标为(8,0),C点的坐标为(0,4),
∴OA=8,OC=4,
∵四边形OABC为长方形,
∴AB=OC=4BC=OA=8,∠B=∠COA=∠OCB=∠OAB=90°,
由折叠性质可知:A=AB=4,C=CB=8,∠=∠B=90°,
设OD=x,CD=y,
则AD=OA﹣OD=8﹣x,D=C﹣CD=8﹣y,
Rt△OCD中,CD2=OC2+OD2,
即x2+16=y2①,
Rt△AD中,AD2=D2+A2,
即(8﹣x)2=(8﹣y)2+16②,
联立①②式解得:,
∴OD=3,
故OD的长为3.
(3)如图所示,作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,
∵△AC为△ACB沿AC翻折得到,点D在BC上,
∴点D关于AC对称点G在BC上,
由对称性可知:CG=CD,HF=DF,
∵OD=3,CD=5,
∴D点的坐标为(3,0),
又∵H的坐标为(﹣3,0),
∴CG=CD=5,
∴G点的坐标为(5,4),
∴△DEF的周长=DE+DF+EF=HF+EG+EF≥GH,
当点H,F,E,G四点共线时,DE+DF+EF长取得最小值为:
GH==4,
故△DEF周长的最小值为4.
【点睛】
本题属于四边形综合题目,考查了一次函数的性质,长方形的性质,折叠的性质等知识,解题的关键是掌握折叠的性质,属于中考压轴题.
展开阅读全文