1、部编版八年级数学下册期末试卷测试卷(解析版)一、选择题1已知二次根式,则的最小值是( )A0B-1CD2下列各组数中,不能作为直角三角形的三边长的是( )A5,4,3B5,12,13C6,8,10D6,4,73如图,E是的边延长线上一点,连结交于点F,连结,添加以下条件,不能判定四边形为平行四边形的是( )ABCD4下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数方差要从中选择一名发挥稳定的运动员去参加比赛,应该选择( )A甲B乙C丙D丁5三角形三边长分别是6,10,8,则它的最长边上的高为( )A6B10C8D4.86如图,四边形ABCD是菱形,对角线A
2、C,BD相交于点O,DHAB于点H,连接OH,若DHO20,则ADC的度数是()A120B130C140D1507如图,在矩形ABCD中,对角线AC,BD相交于点O,M为AO的中点,交OB于E,交AD于F,若,则EF的值为( )A3BCD48如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则CDE的周长的最小值是( )AB10CD12二、填空题9已知,则_10如图,菱形的面积为120 cm2,正方形的面积为50 cm2时,则菱形的边长为_cm11在中,则线段AC的长为_12如图,将长方形沿直线折叠,顶点恰好落在边上点处,已知,则边的长为_13
3、若点P(a+1,2a-3)一次函数y-2x+1的图象上,则a=_14如图,在矩形中,对角线,相交于点,垂直平分于点,则的长为_15如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止图2是的面积与时间的图像,则b的值是_16如图,长方形纸片ABCD中,AB8cm,BC17cm,点O在边BC上,且OB10cm将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _cm三、解答题17计算:(1);(2);(3);(4)18去年某省将地处,两地的两所大学合并成了一所综合性大学,为了方便,两地师生的交往
4、,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)19如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的,请你根据所学的知识回答下列问题:(1)判断的形状,并说明理由:(2)求的面积20如图,在平行四边形ABCD中,ABC的平分线BE交AD于点E,点F是BC边上的一点,且BFAB,连接EF(1)求证:四边形ABFE是菱形;(2)连接AF,交BE于点O,若AB5,BE+AF14,求菱形ABFE的面积21观察
5、下列各式:化简以上各式,并计算出结果;以上式子与其结果存在一定的规律请按规律写出第个式子及结果猜想第个式子及结果(用含(的整数)的式子写出),并对猜想进行证明22某电影院普通票价20元/张,暑假为了促销,新推出两种优惠卡:金卡售价600元/张,每次凭卡不再收费银卡售价150元/张,每次凭卡另收10元暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设看电影x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,提出1条合算的消费建议23如图1,在中,为的中
6、点,连结过点作射线为射线上一动点(1)求的长和的面积;(2)如图2,连结,在点的运动过程中,若为等腰三角形,求所有满足条件的的长;(3)如图3,连结交于点,连结,作点关于的对称点,当点恰好落在的边上时,连结,请直接写出的面积24如图1,直线分别与轴,轴交于,两点,过点作交轴于点(1)请求出直线的函数解析式(2)如图1,取中点,过点作垂于轴的线,分别交直线和直线于点,过点作关于轴的平行线交直线于点,点为直线上一动点,作轴于点,连接,当最小时,求点的坐标及的最小值(3)在图2中,点为线段上一动点,连接,将沿翻折至,连接,是否存在点,使得为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由
7、25如图,已知点A(a,0),点C(0,b),其中a、b满足|a8|+b28b+160,四边形OABC为长方形,将长方形OABC沿直线AC对折,点B与点B对应,连接点C交x轴于点D(1)求点A、C的坐标;(2)求OD的长;(3)E是直线AC上一个动点,F是y轴上一个动点,求DEF周长的最小值【参考答案】一、选择题1D解析:D【分析】直接利用二次根式得定义得出的取值范围,进而得出答案【详解】解:二次根式有意义,解得:,故的最小值为,故选:D【点睛】本题主要考查二次根式的定义,正确得出的取值范围是解题的关键2D解析:D【分析】根据勾股定理逆定理,只要验证两较小边的平方和等于最长边的平方即可【详解】
8、解:A、,5,4,3可以作为直角三角形的三边长,故此选项不符合题意;B、,5,12,13可以作为直角三角形的三边长,故此选项不符合题意;C、,6,8,10可以作为直角三角形的三边长,故此选项不符合题意;D、,6,4,7不可以作为直角三角形的三边长,故此选项符合题意;故选:D【点睛】本题主要考查了勾股定理逆定理,判断三角形是否为直角三角形,已知三角形的三边长,只要利用勾股定理逆定理加以判断即可3B解析:B【解析】【分析】根据平行四边形的判定定理逐项推理证明即可【详解】解: DEBC,DEF=CBF,DEF=CBF,在DEF与CBF中, DEFCBF(ASA),DF=CF,EF=BF,四边形BCE
9、D为平行四边形,故A不符合题意;AEBC,AEB=CBF,AEB=BCD,CBF=BCD,CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故B符合题意;四边形ABCD是平行四边形, .ADBC,ABCD,DECE,ABD=CDB,又ABD=DCE,DCE=CDB,BDCE,四边形BCED为平行四边形,故C不符合题意;AEBC,DEC+BCE=EDB+DBC=180,AEC=CBD,BDE=BCE,四边形BCED为平行四边形,故D不符合题意故选:B【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键4B解析:B【解析】【分析
10、】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可【详解】解:因为,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙故选:B【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立5D解析:D【分析】先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高【详解】解:三角形三边长分别是6,10,862+82=102该三角形为直角三角形该三
11、角形的面积:682=24斜边上的高:24210=4.8这个三角形最长边上的高是4.8故选:D【点睛】本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高6C解析:C【解析】【分析】由四边形ABCD是菱形,可得OBOD,ACBD,又由DHAB,DHO20,可求得OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得OBH是等腰三角形,继而求得ABD的度数,然后求得ADC的度数【详解】四边形ABCD是菱形,OBOD,ACBD,ADCABC,DHAB,OHOBBD,DHO20,OHB90DHO70,A
12、BDOHB70,ADCABC2ABD140,故选C【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得OBH是等腰三角形是关键7C解析:C【解析】【分析】由三角形中位线定理可得AB2ME,OD2MF,可得ABOD,由矩形的性质可得ODOAOBAB,可证ABO是等边三角形,可得AEBO,由直角三角形的性质可求EF的长【详解】解:如图,连接AE,M为AO的中点,MEAB,MFOD,ME是ABO的中位线,MF是AOD的中位线,AB2ME,OD2MF,MEMF,ABOD,四边形ABCD是矩形,ACBD,AOOC,OBOD,ODOAOB,ABAOBO3,ABO是等边三角形,BD
13、6,AD,ABO是等边三角形,点E是BO中点,AEBO,又点F是AD的中点,EFAD,故选:C【点睛】本题考查了矩形的性质,三角形中位线定理,等边三角形的判定和性质等知识,证明AOB是等边三角形是解题的关键8B解析:B【解析】【分析】点C关于OA的对称点C(-1,0),点C关于直线AB的对称点C(7,6),连接CC与AO交于点E,与AB交于点D,此时DEC周长最小,可以证明这个最小值就是线段CC【详解】解:如图,点C(1,0)关于y轴的对称点C(-1,0),点C关于直线AB的对称点C,直线AB的解析式为y=-x+7, 直线CC的解析式为y=x-1,由解得,直线AB与直线CC的交点坐标为K(4,
14、3),K是CC中点,C(1,0),设C坐标为(m,n),解得:C(7,6)连接CC与AO交于点E,与AB交于点D,此时DEC周长最小,DEC的周长=DE+EC+CD=EC+ED+DC=CC= 故答案为10【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长二、填空题9【解析】【分析】根据二次根式的非负性求出x,y,即可得解;【详解】,;故答案是【点睛】本题主要考查了利用二次根式的非负性化简求值,准确计算是解题的关键10B解析:13【解析】【分析】连接BD、AC、EF,BD与AC交于点O,由题意易得B、E、F、D在同一
15、条直线上,则有,然后根据菱形和正方形的面积及勾股定理可进行求解【详解】解:连接BD、AC、EF,BD与AC交于点O,如图所示:四边形是菱形、四边形是正方形,点B、E、F、D在同一条直线上,菱形的面积为120 cm2,正方形的面积为50 cm2,在RtAOB中,由勾股定理可得cm,故答案为13【点睛】本题主要考查菱形与正方形的性质,熟练掌握菱形与正方形的性质是解题的关键11【解析】【分析】根据勾股定理即可得出答案【详解】解:,故答案为:【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c212D解析:10【分析】设边的长为,首先根据矩形的性质得出,
16、进而求出DE的长度,然后根据折叠的性质得出,然后根据勾股定理求解即可【详解】设边的长为,四边形ABCD是矩形, 由折叠的性质可知, 在中, , 解得, 边的长为,故答案为:10【点睛】本题注意考查矩形与折叠问题,掌握勾股定理以及矩形、折叠的性质是关键13【分析】把P点的坐标代入一次函数,即可求得a的值【详解】点P(a+1,2a-3)一次函数y-2x+1的图象上,2a-3=-2(a+1)+1,a=故答案为:【点睛】考查了一次函数图象上点的坐标特征;解题关键是抓住:点在函数解析式上,点的横坐标就满足这个函数解析式14A解析:【分析】结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=
17、OD=4,根据勾股定理可求AD的长【详解】四边形ABCD是矩形,AO=BO=CO=DO,AE垂直平分OB于点E,AO=AB=4,AO=OB=AB=4,BD=8,在RtABD中,AD=.故答案为.【点睛】本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.15【分析】根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值【详解】解:由函数图像可知:时,点P在AB上,点P在BC上,时,点P在CD上,解得解析:【分析】根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值【详解】解:由函数图像可知:时,点P在
18、AB上,点P在BC上,时,点P在CD上,解得,又,即,故答案为:【点睛】本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解1616【分析】过点F作FEBC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB10cm在 中,由勾股定理,可得OE=6cm,即可求解【详解】解:如图,过点F作FE解析:16【分析】过点F作FEBC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB10cm在 中,由勾股定理,可得OE=6cm,即可求解【详解】解:如图,过点F作FEBC于点E,则EF=AB=8cm,AF=BE,在长方形ABCD中,CD=A
19、B=8cm,根据题意得:OF=OB10cm在 中,由勾股定理得: ,AF=BE=OB+OE=16cm故答案为:16【点睛】本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键三、解答题17(1)1;(2)2;(3)1;(4)【分析】根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可【详解】解:(1)原式,;(2解析:(1)1;(2)2;(3)1;(4)【分析】根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可【详解】解:(1)原式,;(2)原式
20、,;(3)原式,;(4)原式,【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式,解题的关键是掌握二次根式的混合运算18计划修筑的这条公路不会穿过公园理由见解析【分析】先过点C作CDAB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案【详解】解析:计划修筑的这条公路不会穿过公园理由见解析【分析】先过点C作CDAB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案【详解】解:如图所示,过点C作CDAB,垂足为点D,由题意可得C
21、AB=30,CBA=45,在RtCDB中,BCD=45,CBA=BCD,BD=CD在RtACD中,CAB=30,AC=2CD设CD=DB=x,AC=2x由勾股定理得AD=AD+DB=2.732,x+x=2.732,x1即CD10.7,计划修筑的这条公路不会穿过公园【点睛】本题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角和含30度角的直角三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形19(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到,再根据勾股定理的逆定理即可求解;(2)用正方形的面积减去3个三角形的面积即可求解【详解】解:(1)是直解
22、析:(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到,再根据勾股定理的逆定理即可求解;(2)用正方形的面积减去3个三角形的面积即可求解【详解】解:(1)是直角三角形,理由:正方形小方格边长为1,是直角三角形;(2)的面积,故的面积为5【点睛】本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及勾股定理的逆定理20(1)见解析;(2)24【分析】(1)证,则,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边形是平行解析:(1)见解析;(2)24【分析】(1)证,则,得四边形是平行
23、四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边形是平行四边形,的平分线交于点,四边形是平行四边形,又,平行四边形是菱形;(2)解:由(1)得:四边形是菱形,在中,由勾股定理得:,即,解得:或,当时,则,;当时,则,;菱形的面积【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键21;第个式子为及结果为,证明见解析【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得,然后分母有理解析:;第个
24、式子为及结果为,证明见解析【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得,然后分母有理化,求出结果即可【详解】解: 第个式子为及结果为证明:左边右边成立【点睛】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般22(1)y10x+150,y20x;(2)A(0,150),B(15,300),C(45,600);(3)当0x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相同,均比金卡划算;解析:(1)y10x+150,y20x;(2)A(0,150),B(1
25、5,300),C(45,600);(3)当0x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相同,均比金卡划算;当15x45时,银卡消费更划算;当x45时,金卡,银卡的总费用相同,均比普通票划算;当x45时,金卡消费更划算【分析】(1)弄清题意,结合图象易知普通票为正比例函数图象,银卡为一次函数图象,依题意写出即可;(2)银卡函数关系式y10x+150,令x0时即可求出A点坐标,令银卡函数与普通卡函数关系式相等即可找到B点坐标,令银卡函数关系式y600,即可找到C点坐标;(3)结合图象分当0x15时,x15时,15x45时,x45时,x45时五段,依次分析出最合算的消费建议即可【详
26、解】解:(1)由题意得,选择银卡时,y与x之间的函数关系式为:y10x+150;选择普通票时,y与x之间的函数关系式为:y20x;(2)由题意可得:当y10x+150,x0时,y150,故A(0,150),当10x+15020x,解得:x15,则y300,故B(15,300),当y10x+150600时,解得:x45,故C(45,600);(3)如图所示,由A、B、C三点坐标可得:当0x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相同,均比金卡划算;当15x45时,银卡消费更划算;当x45时,金卡,银卡的总费用相同,均比普通票划算;当x45时,金卡消费更划算【点睛】本题考查一次函
27、数应用,重点掌握一次函数的基本性质熟练应用,能结合实际灵活运用是解题的关键23(1)20,150;(2)7或;(3)或42【分析】(1)根据等腰三角形的性质可得BD=AB=15,CDAB,根据勾股定理即可求得的长,从而可得的面积;(2)分三种情况进行讨论;当CD=C解析:(1)20,150;(2)7或;(3)或42【分析】(1)根据等腰三角形的性质可得BD=AB=15,CDAB,根据勾股定理即可求得的长,从而可得的面积;(2)分三种情况进行讨论;当CD=CP时,作CEAP于E,根据SABC=ABCD=BCCE可得CE的长,CECP,而根据直角三角形斜边大于直角边可得该情况不成立;当CD=DP时
28、,作DFAP于F,延长FD交BC于G,根据全等三角形的判定可得AFDBGD,从而得到DF=DG,根据SCDB=CDBD=DGBC,可得DF=DG=12,根据勾股定理可得AF和PF的长,即可得到AP的长;当PD=PC时,作CEAP于E,作DFAP于F,延长FD交BC于G,设AP=x,可得PE=x-7,根据勾股定理可得,列式即可求得AP的值(3)分三种情况进行讨论:当A落在CD上时,作GECD于点E,根据等腰三角形的性质可得CDAB,可得sinDAC=,cosDAC=,根据题意可知DG是AA的垂直平分线,从而得到ADGADG(SAS),AC=5,即可得到sinGAE= sinGAE=,cosGAE
29、=cosGAE=,设AG=x,则CG=25-x,GE=x,AE=x,可得CE=x+5,利用勾股定理可得GE的长,根据SACG=ACEG即可得解;当A落在BC上时,作GEBC于点E,AA与DG的交点为F,可得DF为中位线,所以DFBA,且DF=BA,根据等腰三角形性质及中位线性质可得sinABA=,cosABA=,从而求得BA的长,BA的长,根据矩形的判定可得四边形FAEG为矩形,从而得到GE的长,根据SACG=ACEG即可得解;当A落在BD上时,会得到A与B点重合,所以该情况不存在【详解】解:(1),D为的中点,BD=AB=15,CDAB,CDB=90,CD=,SACD=CDAD=2015=1
30、50;(2)当CD=CP时,如图,作CEAP于E,SABC=ABCD=BCCE,3020=25CE,解得 CE=24,CECD,即CECP,CD=CP不成立,当CD=DP时,作DFAP于F,延长FD交BC于G,AFBC,FAD=B,AFD=BGD=90,AD=BD,AFDBGD(AAS),DF=DG,SCDB=CDBD=DGBC,2015=25DGDF=DG=12,AF=,在RtDFP中,PF=,AP=PF-AF=16-9=7,当PD=PC时,作CEAP于E,作DFAP于F,延长FD交BC于G,由上述过程可得 AF=9,CG=BC-BG=25-9=16,设AP=x,PE=PF-FE=AF+AP
31、-FE=9+x-16=x-7,当PD=PC时,在RtPDF中,在RtPCE中,=,解得x=,AP=,综上所述,AP=7或(3)当A落在CD上时,作GECD于点E,则SACG=ACEG,AC=BC,D为AB中点,CDAB,AC=BC=25,AB=30,BD=AD=15,CD=20,sinDAC=,cosDAC=,由题知A,A关于DG对称,DG是AA的垂直平分线,DG=DG,ADG=ADG,AD=AD=15,ADGADG(SAS),AC=5,sinGAE= sinGAE=,cosGAE=cosGAE=,设AG=x,则CG=25-x,GE=x,AE=x,CE=x+5,CGE为直角三角形,解得x=,G
32、E=,SACG=ACEG=5=;当A落在BC上时,作GEBC于点E,AA与DG的交点为F,则SACG=ACEG,A,A关于DG对称,点F为AA的中点,D为AB的中点,则在ABA中,DF为中位线,DFBA,且DF=BA,AFD=90,AAB=90,CD=20,BC=25,AB=30sinABA=,cosABA=,BA=30=24,AC=25-18=7,AABC,GEBC,GEAA,DFBA,FGAE,AAC=90,四边形FAEG为矩形,GE=FA=AA=24=12,SACG=ACEG=712=42当A落在BD上时,此时DA=DA=15,A与B点重合,AP BC,该情况不存在,综上所述,的面积为或
33、42【点睛】本题考查了等腰三角形的性质,勾股定理,全等三角形的判定与性质,矩形的判定与性质等知识点解题的关键是运用分类讨论思想进行解题24(1)直线的函数解析式为:;(2)当点的坐标为:时,有最小值;(3)的坐标为:,或,或或【解析】【分析】(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,解析:(1)直线的函数解析式为:;(2)当点的坐标为:时,有最小值;(3)的坐标为:,或,或或【解析】【分析】(1)利用锐角三角函数求直角三角形的边和的长度,从而得出点、的坐标,再利用待定系数法,求出直线的函数解析式;(2)此题需先在图形中补全题目出现的条件,第二问为“造
34、桥问题”,借助两点之间线段最短,先作图,再结合函数知识解决问题;(3)借助有定点、定长可确定圆入手,找到动点的运动轨迹;同时,考虑等腰三角形的腰不确定,应分三种情况讨论,从而确定点的坐标【详解】解:(1)轴轴,则,;过点作交轴于点,;设直线的函数解析式为:,将点,代入得,解得,直线的函数解析式为:(2)轴,轴,轴,直线上所有点的纵坐标都相等;将点在直线上平移至点,使得,连接,交于点,过作交轴于点,连接,则,当位于点时,有最小值;点为线段的中点,轴,直线上所有点的横坐标都为2;,则,设点,代入得,解得,则,则,的最小值为:,设直线的函数解析式为:,将点,代入得,解得,直线的函数解析式为:,设点,
35、将点代入得,当最小时,点的坐标为:(3)存在点,使得为等腰三角形点,是定点,则是定长,沿翻折至,则点是上的动点,(1)当时,如图,点在轴上方,点,;如图,点在轴下方,点,;(2)当时,也在上,点;(3)当时,点也在上,点【点睛】本题考查了一次函数的综合应用,涉及的知识点有:一次函数、直角三角形等,体现了数学的模型思想、转化思想解题的关键是:学生需要对基础知识掌握非常熟练,灵活调动25(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)DEF周长的最小值为4【分析】(1)根据非负数的性质可得a、b的值,由此可得问题的答案;(2)根据长方形的性解析:(1)A点的坐标为(
36、8,0),C点的坐标为(0,4);(2)OD的长为3;(3)DEF周长的最小值为4【分析】(1)根据非负数的性质可得a、b的值,由此可得问题的答案;(2)根据长方形的性质和折叠的性质可得AAB4,CCB8,B90,设ODx,CDy,根据勾股定理列方程,求解可得答案;(3)作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,由翻折的性质得D、H、G点的坐标,当点H,F,E,G四点共线时,DE+DF+EF长取得最小值,由此可得答案【详解】解:(1)|a8|+b28b+160,|a8|+(b4)20,|a8|0,(b4)20,a80,b40,a8,b4,A点的坐标为(8,0)
37、,C点的坐标为(0,4);(2)A点的坐标为(8,0),C点的坐标为(0,4),OA8,OC4,四边形OABC为长方形,ABOC4BCOA8,BCOAOCBOAB90,由折叠性质可知:AAB4,CCB8,B90,设ODx,CDy,则ADOAOD8x,DCCD8y,RtOCD中,CD2OC2+OD2,即x2+16y2,RtAD中,AD2D2+A2,即(8x)2(8y)2+16,联立式解得:,OD3,故OD的长为3(3)如图所示,作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,AC为ACB沿AC翻折得到,点D在BC上,点D关于AC对称点G在BC上,由对称性可知:CGCD,HFDF,OD3,CD5,D点的坐标为(3,0),又H的坐标为(3,0),CGCD5,G点的坐标为(5,4),DEF的周长DE+DF+EFHF+EG+EFGH,当点H,F,E,G四点共线时,DE+DF+EF长取得最小值为:GH4,故DEF周长的最小值为4【点睛】本题属于四边形综合题目,考查了一次函数的性质,长方形的性质,折叠的性质等知识,解题的关键是掌握折叠的性质,属于中考压轴题
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100