1、世界桥梁2 0 2 3年第51卷第5期(总第2 2 7 期)World Bridges,Vol.51,No.5,2023(Totally No.227)D0I:10.20052/j.issn.1671-7767.2023.05.00741海上全断面超宽钢箱梁吊装施工技术熊敬刚(中国铁建大桥工程局集团有限公司,天津30 0 30 0)摘要:澳逃四桥南引桥为(6 8 0 十6 0)m连续变宽钢箱梁桥,钢梁为钢箱十挑臂形式,宽48.46 1.7 m。南引桥钢梁沿纵向分12 个大节段,大节段钢梁分成中间钢箱和两侧翼缘,在工厂制造后运到桥位,中间钢箱利用浮吊架设成联后安装翼缘吊机进行两侧翼缘安装(S5S
2、7 号墩间大节段除外)。由于南引桥西侧存在污水管道,S5S7 号墩超宽钢箱梁分为7 个大节段制造,中间钢箱与两侧翼缘在工厂整体焊接,利用浮吊定点在S5号墩西侧起吊全断面大节段钢梁至滑移支架,由S5号墩向S7号墩方向逐节段滑移到位,最大滑移重量7 15t。针对航空限高及钢梁节段重量的吊装要求,建造2 2 0 0 tL臂架起重船,非自航浮吊;制造组合吊具,以满足不同规格、不同重量的梁段吊装需求。施工时,浮吊和运梁船抛锚定位后,浮吊在高潮位取梁并携梁缓慢移位到架梁区域,分级落梁后浮吊退出,完成海上全断面超宽钢箱梁的吊装施工。关键词:跨海桥梁;超宽钢箱梁;浮吊;组合吊具;滑移支架;高潮位;吊装;施工技
3、术中图分类号:U448.213;U 445.4文献标志码:A文章编号:16 7 1-7 7 6 7(2 0 2 3)0 5-0 0 41-0 61工程概况澳逃四桥(即澳逃第四跨海大桥设计连建造工程)起自澳门新城区填海A区东侧,与港珠澳大桥口岸人工岛连接,跨越外港航道、往内港航道,与澳门新城区填海E区相连。该项目主线全长约3.085km,其中跨海段长约2.8 6 km,设置2 座通航孔桥。大桥主线为双向8 车道,其中中间2 车道为电单车专用道,主线范围内设风障,以实现8 号风球期间车辆沿主线能够安全行驶的目标。大桥由北向南划分为A区立交桥(1条主线桥十4条匝道桥)十北引桥十北侧主桥十南侧主桥十南
4、引桥十E区匝道桥。澳逃四桥总体布置如图1所示。南引桥为(6 8 0 十6 0)m连续变宽钢箱梁桥,梁宽48.46 1.7 m,采用单箱三室钢箱梁(见图2),梁高3m。钢箱梁采用鱼腹型开口截面形式 1-3,西A区(北)320(北引桥)80808080202.5?收稿日期:2 0 2 2-0 9-16基金项目:中国铁建股份有限公司科研课题(2 0 2 0-B01)Scientific Research Project of China Railway Construction Corporation Limited(2020-B01)作者简介:熊敬刚(196 9),男,高级工程师,1992 年毕业
5、于西南交通大学桥梁工程专业,工学学士(E-mail:)。侧悬臂翼缘(挑臂形式)宽14.2 5m,东侧悬臂翼缘(挑臂形式)宽12.15m,中间箱室宽7.52 0.8 m,边箱室宽7.2 5m。钢箱梁顶板、底板坡度相同,两侧悬臂板及横隔板沿纵向每隔4m布置1道,相邻2道横隔板间设置1道半隔板。西48.461.714.25+7.25+7.5 20.8 图2 南引桥钢箱梁横断面Fig.2 Cross-section of steel box girders in southapproach bridge桥位常年最高气温37.9,最低气温0.4,最大风速36.8 m/s,年平均雷暴天气50.4d,多年实
6、测最高潮位十2.9 8 m、最低潮位一1.7 8 m。桥位E区(南)685(主桥第1联)685(主桥第2 联)280202.5施工期间航空限高+6 0.0 0通航净空239X30Fig.1 General layout of Fourth Macao-Taipa Bridge东7.2512.15单位:m540(南引桥)202.5280通航净空249X30?图1澳砂四桥总体布置202.5?80,8080,80,80,80,60?单位:m42处常年受台风及季候风影响,每年7 一10 月为台风多发期,悬挂1号风球台风每年7 次左右,悬挂3号风球以上的台风每年3次左右。为保障港澳直升机场航空要求,Z4
7、墩以北,线路中线左侧55 145m、线路中线右侧145m范围内限高6 0 m;Z4墩以南(主桥第2 联边跨、南侧引桥、匝道),线路中线两侧145m范围内限高8 0 m。2超宽钢箱梁施工方案南引桥钢梁沿纵向分为12 个大节段,大节段钢梁分成中间钢箱和两侧悬臂翼缘,中间钢箱利用2200t浮吊架设成联后安装翼缘吊机进行两侧悬臂翼缘安装(S5S7 号墩间7 个大节段除外)4-5。因南引桥东侧为澳门述仔码头,2 2 0 0 t浮吊仅可在桥位西侧吊装钢梁。由于南引桥西侧存在污水管道,S5S7 号墩中间钢箱无法利用2 2 0 0 t浮吊原位架设,经研究采用2 2 0 0 t浮吊定点在S5号墩西侧吊装全断面大
8、节段钢梁到滑移支架上,通过滑移系统滑移(S5-S7)到桥位,调梁焊接成联。南引桥滑移段钢箱梁吊装立面如图3所示。SYH3S图3南引桥滑移段钢箱梁吊装立面Fig.3 Profile of steel box girders in south approach bridge南引桥G3S5号墩中间钢箱划分5个节段吊装,最大重量157 6 t,两侧翼缘各划分2 4个节段吊装,最大重量54.1t,中间钢箱与两侧翼缘分开吊装。S5S7 号墩钢梁分为7 个大节段,编号为SYH1SYH 5、SYH 6-1、SYH 6-2,中间钢箱与两侧66.5+SYH11?世界桥梁2023,51(5)翼缘在工厂整体焊接,桥位
9、吊装并滑移到位,最大滑移重量7 15t。南引桥钢梁分段示意如图4所示。SYH1为全桥最宽钢梁节段,长17.5m、宽6 0.561.7m,重58 6 t。在S5S7 号墩间大节段钢梁中,SHY3为最重钢梁节段,长2 4.0 m、宽56.6 58.5m,重7 15t。浮吊吊具重量为10 3.8 t。近岸侧河床较浅,吊装难度大,风险较高。施工期间为保证船只正常施工作业,对所占用的施工区域进行清淤疏浚6-8 ,清淤疏浚区域为:主桥、引桥、A区立交互通东西侧2 50 m范围内,清淤后河床标高一5.50 m(以澳门MSL为基准面,下同)。南引桥近岸侧清淤受到当地污水管影响,清淤后河床标高为一4.50 m左
10、右,为了确保施工安全,南引桥钢梁利用高潮位吊装。根据南引桥桥址的清淤状况、吊装梁重、浮吊作业吃水、潮汐情况,南引桥钢梁只能在潮高十2.0 0 m以上时吊装,才能满足浮吊吃水4.5m要求,且必须在潮高下落到十2.0 0 m前吊装完毕。从澳门沿海潮汐表可知,潮高十2.0 0 m以上时架梁区域水深大于4.7m,满足吊装时间段为5:0 0 13:0 0,作业时间8 h。钢梁滑移段吊装工艺流程为:浮吊抛锚定位运梁船抛锚定位浮吊变幅角度调整落钩浮吊落2417.5.(SYH2)(SYH1)S单位:m80+SYH10SYH9图4南引桥钢梁分段示意Fig.4 Section division of steel
11、girders in south approach bridge钩穿销浮吊提梁静停浮吊提梁起升浮吊移位浮吊调整钢梁平面位置浮吊分级落梁到位浮吊摘钩、退出 9-12 。3超宽钢箱梁浮吊吊装关键技术3.1吊装设备为了满足航空限高6 0 m及钢梁节段重量的吊装要求,建造了2 2 0 0 tL臂架起重船,为非自航浮吊(见图5)。浮吊整机起重能力2 2 0 0 t,总长141m、水线间长110 m,型宽41m、型深8 m,空载吃水4.3m,满载吊装2 2 0 0 t工况下吃水5.2 m要求。浮吊在高潮位十2.2 0 m(10年一遇高潮位)时空载,最高点不超过航空限高。浮吊配置5只HYD-148080SY
12、H880SYH7SYH6-2SYH6-1SYH5SYH4SYH3SYH2SYHiS单位:m海上全断面超宽钢箱梁吊装施工技术德尔泰大抓力锚作为工作锚(每只重12 t)、1只17.25tAC14锚作为工作锚兼航行锚、2 只15t海军锚、6 根工作锚锚索和2 根工作锚锚索兼航行锚锚索,每根锚索配相同直径锚链,锚链长12.5m。15熊敬刚2043244一吊具纵梁浮吊吊钩、.00.00T.00.0.0.0梁段吊耳转换接头一钢梁SYH3横隔板一吊绳吊点滑轮组76100图52 2 0 0 t浮吊结构Fig.5 Configuration of 2 200 t-capacity floating crane浮
13、吊双L臂架最大起重2 2 0 0 t、最小起重800t,单L臂架最大起重110 0 t、最小起重40 0 t。浮吊L臂架可进行变幅操作,最大变幅角度为2 0(以臂架垂直为0 计),最大变幅角度时起重吨位最小。航外吊钩中心点幅度17.532.3m,航外前排吊钩中心点幅度2 7.541.8 m。2 2 0 0 t浮吊技术参数如表1所示。表12 2 0 0 t浮吊技术参数Table 1 Parameters of 2 200 t-capacity floating crane吊臂角度/()9088858075703.2吊具吊具用于连接浮吊吊钩和梁段吊点。钢梁的吊点均布置在钢梁横隔板处,保证吊装过程中
14、局部强度和高度要求 13-141。根据吊装区域划分、梁段规格、梁段自重等要求,制造了组合吊具,主要包括主纵梁、转接结构(I型转换接头或型转接横梁)、双吊点过渡接头(I型或型)、双吊点横梁、马鞍座、吊绳和吊点滑轮组等。通过不同部件组合10 种形式组合吊具,可满足全桥7 2 段不同规格、不同重量的梁段吊装需求。采用组合吊具吊装不同梁段时,纵梁下吊点根据梁段吊耳间距不同有所调整。通过多点分配平衡调节,解决了吊点受力不均及应力集中问题,实现大吨位、大体积钢箱梁吊装。吊具与浮吊动滑轮组连接满足配合尺寸要求,吊具各部件结构强度满足受力要求 15-16 。南引桥滑移段钢梁组合吊具如图6 所示。10.5图6
15、南引桥滑移段钢梁组合吊具Fig.6 Spreaders for steel girders sliding into positionin south approachbridge+10单位:m舫外幅度/m起吊高度/m起吊重量/17.544.219.143.021.641.025.437.429.033.532.329.39.5+24以吊装最宽钢梁节段SYH1为例进行说明。吊装SYH1时,浮吊前后两吊钩沿钢梁纵向间距为24m,钢梁吊耳纵、横向中心间距分别为12、14m,根据钢梁偏心重量计算出浮吊单L臂架最大吊重427t,另一单L臂架吊重2 6 3t。由于钢梁较宽,要保证起吊过程中钢梁翼缘不碰撞
16、浮吊L臂架,根据钢梁预定摆放位置及浮吊吊梁角度,浮吊取梁时最大倾角要达到19,此时浮吊单L臂架最大起重重量为430 t,大于42 7 t,可以起吊。SYH1整体吊重690t,小于浮吊倾角19时起重重量8 6 0 t,满足起重要求。吊具在栈桥上拼装,浮吊就位后起吊吊具,移位到运梁船后定位准备起吊钢梁。2.2003.3船只抛锚定位2.2001.7501.400110080012.5浮吊提前到距离岸边较远处预定位置S4号墩北侧进行抛锚,此处清淤后回淤较少,河床标高一5.30 m,锚艇配合共抛设5个锚进行定位,船M1、M 4锚,船M5、M 6、M 8 锚,锚绳长度分别为70、2 0 0、10 0、12
17、 0、2 30 m,船舰M5、M 6、M 8 锚及船M4锚在取梁移船时不再移动,船M1锚在取梁后重新抛锚。浮吊定位后L臂架变幅角度调整到19。浮吊与运梁船定位平面布置如图7 所示。运梁船总长10 0 m,型宽2 2 m、型深6 m,满载吃水4.2 m。待浮吊定位后,运梁船进人S4号墩平台北侧,在浮吊船取梁区域进行抛锚定位。运梁船分别抛14号临时锚。运梁船抛锚定位后,浮吊调整平面位置,船与运梁船船相对接,距离约1.0m,位置调整后收缆绳进行精确定位。3.4浮吊取梁浮吊与运梁船精确定位后,浮吊落钩到梁面,将吊具滑轮吊钩与钢梁吊点耳板连接,并穿连接轴以及缩颈卡板。然后解除钢梁与运梁船所有连接,检查无
18、误后开始缓慢起吊钢梁,待钢梁吊离运梁船单位:m44钢梁SYH1-Ml&4号世界桥梁2023,51(5)+60.00(航空限高)2号18%S4S5钢梁滑移支架S6运梁船M43号14东侧西侧S7SYH130.85ELA污水管出口2200t浮吊M8M5&M6图7 浮吊与运梁船定位平面布置Fig.7 Plan layout of floating crane and girdertransportation barge20cm后停止起钩,静停10 min观察浮吊、吊具、吊耳状态 17-18 。观察无异常后继续提升钢梁,待钢梁高度超过运梁船船头高度5m后停止起钩,浮吊后移,运梁船起锚退出架梁区域。3.5
19、浮吊吊装移位运梁船起锚退出架梁区域后,浮吊收起L臂架,变幅调整倾角到18。通过收紧浮吊右侧M4、M8锚绳,放松M1、M 5、M 6 锚绳,浮吊向近岸侧(南侧)横移约18 0 m,在横移过程中重新抛M1锚到M1锚处,也可以提前抛好锚直接换缆绳,横移到位后安装前进缆于S5号墩柱上。收放缆绳时,密切关注锚绳的拉力情况,从横移开始到横移到位用时3h。浮吊吊装移位如图8 所示。图8 浮吊吊装移位Fig.8Movement of floating crane3.6落梁钢梁移至待架位置后,浮吊继续提升钢梁,待钢梁提升到滑块上约2 m高度停止提梁,此时钢梁翼缘与浮吊L臂架的距离只有2 m(见图9)。调整锚绳使
20、浮吊向S5号墩处前移,浮吊就位后M1、M 3M 6、M8的锚绳长度分别为55、2 3、45、18 0、150、150 m,此时浮吊距既有污水管出口间距为5m。+15.20中按每次50 cm行程缓慢落梁,待钢梁下落距滑块还有50 cm时停止落梁,调整钢梁到预定姿态,通过调整浮吊缆绳,使钢梁上临时支点与滑块精确对位,误差控制在10 cm以内。满足要求后继续按20、2 0、10 c m 的行程分级缓慢落梁,直到钢梁临时支点均落到滑块上。落梁时,密切关注浮吊吊钩荷载值。落梁完毕,拆除吊具与钢梁吊耳连接,使浮吊与钢梁脱离,及时把浮吊移到深水区。南引桥SYH1SYH3号钢梁吊装过程中,浮吊吊装变幅角度分别
21、为18 16 17,从运梁船取梁到落梁完成用时分别为7.5、6.0、6.5h。4结语澳逑四桥南引桥为变宽等高的连续钢箱梁桥,近岸段受污水管道的影响,S5S7 号墩钢箱梁分成7段制造,采用2 2 0 0 t浮吊定点在S5号墩西侧吊装到滑移支架上,通过滑移系统滑移(S5S7)到桥位,调梁焊接成联。南引桥节段钢梁带两侧翼缘整体吊装,桥面较宽,通过调整2 2 0 0 t浮吊不同变幅角度解决了宽翼缘钢箱梁吊装技术难题。先现场清淤,再利用潮汐涨落规律施工,解决了近岸侧大型浮吊吃水较深难题。精确计算抛锚的数量和位置,通过收放缆绳控制浮吊平面位置,精确控制浮吊与吊装区域内既有障碍物间距,稳定浮吊摆动,从而实现
22、钢箱梁精确落梁定位。澳四桥南引桥7 个滑移段钢箱梁2 0 2 2 年11月均吊装完成并滑移到位。参考文献(References):1 陈涛:三主桁钢梁两节间大节段架设关键技术 J.桥梁建设,2 0 2 0,50(6):8-13.(CHEN Tao.Key Erection Techniques for Two-PanelLarge Segments of Three-Main-Truss Steel GirderJ.Bridge Construction,2020,50(6):8-13.in Chinese)2 李军堂沪苏通长江公铁大桥主航道桥钢桁梁整体制造架设技术桥梁建设,2 0 2 0,5
23、0(5):10-15.2Q0S-4.50(清淤标高)图9 SYH1落梁施工示意Fig.9Lowering girder SYHl2200t浮吊单位:m海上全断面超宽钢箱梁吊装施工技术(LI Juntang.Integral Manufacturing and ErectionTechniques for Steel Truss Girder of Main NavigationalChannel Bridge of Shanghai-Suzhou-Nantong ChangjiangRiver BridgeJ.BridgeConstruction,2 0 2 0,50(5):10-15.in
24、Chinese)3王玲,王韬,王荣霞大跨径连续钢桁梁桥悬臂拼装线形控制方法研究 J重庆交通大学学报(自然科学版),2 0 17,36(11):11-15.(WANGLing,WANG Tao,WANG Rongxia.LinearControl Method of Cantilever Assembly of Long SpanContinuous Steel Truss BridgeJJ.Journal of ChongqingJiaotong University(Natural Science),2 0 17,36(11):11-15.in Chinese)4 孙洪斌,陈涛宁波三官堂大桥
25、施工控制关键技术J.桥梁建设,2 0 2 0,50(5):119-12 4.SUN Hongbin,C H EN T a o.K e y C o n s t r u c t io nControl Techniques for Sanguantang Bridge in NingboJ.Bridge Construction,2 0 2 0,50(5):119-12 4.inChinese)5孙立鹏,刘永健,杨岳华,等台州湾跨海大桥通航孔桥悬拼匹配关键问题研究J桥梁建设,2 0 18,48(6):116-121.(SUN Lipeng,LIU Yongjian,YANG Yuehua,et a
26、l.Research on Key Problems of Matching Technology inCantilever Erection of Navigation Opening Bridge ofTaizhou Bay Cross-Sea BridgeJJ.Bridge Construction,2018,48(6):116-121.in Chinese)6 姚华平潭海峡公铁大桥大小练岛水道桥施工技术J.桥梁建设,2 0 2 0,50(1):7-12.(YAO Hua.Construction Techniques for Dalian Islet-Xiaolian Islet Wa
27、terway Bridge of Pingtan Straits Rail-cum-Road BridgeJ.Bridge Construction,2 0 2 0,50(1):7-12.in Chinese)7陈钊庭,王荣辉港珠澳大桥深水区非通航孔桥大节段钢箱梁施工全过程控制J桥梁建设,2 0 15,45(5):112-116.(CHEN Zhaoting,WANG Ronghui.Whole ProcessControl of Construction of Large Block Steel Box Girderof Non-Navigable Span Bridge of Hong K
28、ong-Zhuhai-Macao Bridge over Deep Water AreaJJ.BridgeConstruction,2 0 15,45(5):112-116.in C h in e s e)8陈涛,袁建新宁波三官堂大桥主桥合龙控制关键技术J.桥梁建设,2 0 2 1,51(4):141-146.(CHEN Tao,YUAN Jianxin.Key Closure ControlTechniques for Main Bridge of Sanguantang Bridge inNingboLJ.Bridge Construction,2 0 2 1,51(4):141-146.
29、in Chinese)9周外男,王令侠.芜湖长江公铁大桥主桥钢梁架设方案熊敬刚45J.桥梁建设,2 0 18,48(1):1-6.(ZHOU Wainan,WANG Lingxia.Erection Scheme forSteel Girder of Main Bridge of Wuhu Changjiang RiverRail-cum-Road BridgeJJ.Bridge Construction,2018,48(1):1-6.in Chinese)10于祥敏,陈德伟,白植舟,等.贵黔高速鸭池河特大桥钢桁梁施工关键技术J桥梁建设,2 0 17,47(4):10 7-112.(YU Xi
30、angmin,CHEN Dewei,BAI Zhizhou,et al.Key Techniques for Construction of Steel Truss Girderof Yachi River Bridge on Guiyang-Qianxi ExpresswayJ.Bridge Construction,2 0 17,47(4):10 7-112.inChinese)11苏剑南重庆市曾家岩嘉陵江大桥钢桁梁架设方案研究 J.世界桥梁,2 0 17,45(2):6-9.(SU Jiannan.Study of Steel Truss Girder ErectionSchemes f
31、or Zengjiayan Jialingjiang River Bridge inChongqingJJ.World Bridges,2 0 17,45(2):6-9.inChinese)12吴海涛,李鸥大跨连续钢桁梁架设施工控制分析JJ.公路工程,2 0 12,37(2):137-141,157.(WU Haitao,LI Ou.Construction Control of LongSpan Continuous Steel-Trussed Girder Bridge J.HighwayEngineering,2 0 12,37(2):137-141,157.in Chinese)13周
32、旭.荆岳公路大桥南主跨钢箱梁吊装施工技术J.公路工程,2 0 13,38(5):18 4-18 7,198.(ZHOU Xu.South Mainspan Jingyue Highway BridgeSteel Box Girder Construction TechniqueJJ.HighwayEngineering,2 0 13,38(5):18 4-18 7,19 8.inChinese)14周彦文,郭杰鑫,汪泉庆名山长江大桥主桥南边跨钢箱梁吊装施工方案比选与实施J世界桥梁,2 0 17,45(3):1-5.(ZHOU Yanwen,G U O Ji e x i n,WA NG Q u
33、a n q i n g.Scheme Comparison for South Side-Span Steel BoxGirder Erection of Main Bridge of MingshanChangjiang River Bridge and ImplementationJJ.World Bridges,2017,45(3):1-5.in Chinese)15何宇,李永强,乐思韬,等.平潭海峡大小练岛水道桥施工监控 J铁道建筑,2 0 2 0,6 0(6):40-43.(H EYu,LI Yo n g q i a n g,LESi t a o,e t a l.Constructi
34、on Monitoring for Pingtan Strait DaxiaolianIslands Waterway BridgeJ.Railway Engineering,2020,60(6):40-43.in Chinese)16 张引大跨多跨连续钢梁架设及施工监控研究J.公路交通技术,2 0 0 7(3):112-114.(ZHANG Yin.Study on Supervision of Erection and46Construction of Large-Span and Multi-Span ContinuousSteel GirdersJ.Technology of High
35、way andTransport,2007(3):112-114.in Chinese)17李忠周,朱晓亮,周俭洞庭湖大桥施工监控技术J.施工技术,2 0 2 0,49(15):48-50.(LI Zhongzhou,ZH U Xia o lia n g,ZH O U Jia n.Construction Monitoring Technology of Dongting LakeBridgeJJ.Construction Technology,2 0 2 0,49(15):Offshore Hoisting Techniques for Very Wide Integral Steel Bo
36、x Girders(China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.,Tianjin 300300,China)Abstract:The south approach bridge of the Fourth Macao-Taipa Bridge is a continuous boxgirder bridge with span arrangement of 6 X 80 m and 60 m.The full width of the deck variesbetween 48.4 and 61.7 m.
37、To facilitate installation,the superstructure of the south approachbridge was divided into 12 segments,each consisting of a prefabricated central box and twoflanged outriggers.The individual boxes and outriggers were floated to the holding area at thebridge site.During the construction,the steel box
38、es in continuous spans were erected ahead ofoutriggers,and the gantries to erect the outriggers were assembled once the installation of thesteel boxes was finished(excluded the outriggers between piers S5 and S7).Due to the existenceof sewage pipes on the west side of the south approach bridge,the s
39、teel box girders between piersS5 and S7 were divided into seven large segments to facilitate manufacturing.The central steelboxes and the flanged outriggers were welded to be an entirety in the factory,which were in turnhoisted onto the scaffolds from the west side of pier S5 to slide from pier S5 t
40、owards the pier S7,with a maximum sliding weight of 715 t.To fulfill the requirements of aeronautical clearance andhoisting weight of the steel box girder segment,a 2 200 t-capacity and non-self-propelled floatingcrane that is fitted with L-shaped boom was developed.Spreaders of different specs were
41、manufactured to meet the hoisting requirements of girder segments with different dimensions andweights.Once the floating crane and the girder transportation barges were moored,the floatingcrane began to take girders at the highest water level and move the girders to the erection zone forstepped lowe
42、ring,when all the girders were lowered into position,the floating crane left,tofurther complete the offshore erection of the full-width steel box girders.Key words:sea crossing;very wide steel box girder;floating crane;spreader;compositehoisting equipment;scaffolds for girder sliding;high water leve
43、l;hoisting;constructiontechnique(编辑:陈雷)世界桥梁2023,51(5)48-50.in Chinese)18郭爱平,姜阿娟,张伟山恩来高速公路忠建河特大桥施工监控 JJ.桥梁建设,2 0 18,48(6):110-115(GUO Aiping,JI A NG A ju a n,ZH A NG We i s h a n.Construction Control of Zhongjian River Bridge onEnshi-Laifeng Expressway J.Bridge Construction,2018,48(6)::110-115.in C h in e s e)XIONG Jinggang