1、人教中学七年级下册数学期末测试题含解析一、选择题1如图,图中的内错角的对数是( )A3对B4对C5对D6对2下列图形中,哪个可以通过图1平移得到( )ABCD3已知 A(1,2)为平面直角坐标系中一点,下列说法正确的是( )A点在第一象限B点的横坐标是C点到轴的距离是D以上都不对4下列语句中:同角的补角相等;雪是白的;画;他是小张吗?两直线相交只有一个交点其中是命题的个数有( )A1个B2个C3个D4个5如图,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )ABCD6若,则( )A632.9B293.8C2938D63297如图所示,小明课间把老师的三角板的直角顶点放在
2、黑板的两条平行线a,b上,已知2=35,则1的度数为( )A45B125C55D358如图,所有正方形的中心均在坐标原点,且各边与轴或轴平行,从内到外,它们的边长依次2,4,6,8,顶点依次用,表示,则顶点的坐标是( )ABCD九、填空题9若x,则x的值为_十、填空题10点A关于x轴的对称点的坐标为_十一、填空题11若在第一、三象限的角平分线上,与的关系是_.十二、填空题12如图,已知直线EFMN垂足为F,且1138,则当2等于_时,ABCD十三、填空题13如图,将一张长方形纸条折成如图的形状,若,则的度数为_十四、填空题14若,且a,b是两个连续的整数,则a+b的值为_十五、填空题15P(2
3、m-4,1-2m)在y轴上,则m=_十六、填空题16在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是_十七、解答题17(1)(2)十八、解答题18求下列各式中的x值.(1) (2)十九、解答题19如图,已知:,求证:证明:(已知),_(_)(_),_(等量代换)(_)二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到原点的距离是_;(2)将点向轴的负方向平移个单位,则它与点_重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离
4、是多少?二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求|ab|+的值(3)已知:9+x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形(1)拼成的正方
5、形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间
6、有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)二十四、解答题24如图,两个形状,大小完全相同的含有30、60的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板P
7、AC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定值,请选择你认为对的结论加以证明二十五、解答题25在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在
8、,请说明理由【参考答案】一、选择题1C解析:C【分析】利用内错角的定义分析得出答案【详解】解:如图所示:内错角有:FOP与OPE,GOP与OPD,CPA与HOP,FOP与OPD,EPO与GOP都是内错角,故内错角一共有5对故选:C【点睛】此题主要考查了内错角的定义,正确把握内错角的定义是解题关键2A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考点:平移的性质解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考点:平移的性质3C【分析】根据点的坐标性质以及在坐标轴上点的性
9、质分别判断得出即可【详解】解:A、10,点在第二象限,原说法错误,该选项不符合题意;B、点的横坐标是1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键4C【分析】根据命题的定义分别对各语句进行判断【详解】解:“同角的补角相等”是命题,“雪是白的”是命题;“画AOB=Rt”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题故选:C【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已
10、知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式 有些命题的正确性是用推理证实的,这样的真命题叫做定理5A【分析】过三角板60角的顶点作直线EFAB,则EFCD,利用平行线的性质,得到3+4=1+2=60,代入计算即可【详解】如图,过三角板60角的顶点作直线EFAB,ABCD,EFCD,3=1,4=2,3+4=60,1+2=60,1=25,2=35,故选A【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键6B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立
11、方根的性质,熟练立方根的含义与性质是解题的关键.7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8C【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n1(n1,n1),A4n2(n1,n1),A4n3(n1,n1),A4n4(n1,解析:C【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n1
12、(n1,n1),A4n2(n1,n1),A4n3(n1,n1),A4n4(n1,n1)(n为自然数)”,依此即可得出结论【详解】解:观察发现:A1(1,1),A2(1,1),A3(1,1),A4(1,1),A5(2,2),A6(2,2),A7(2,2),A8(2,2),A9(3,3),A4n1(n1,n1),A4n2(n1,n1),A4n3(n1,n1),A4n4(n1,n1)(n为自然数),202150541,A2021(506,506)故选C【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n1(n1,n1),A4n2(n1,n1),A4n3(n1,n1),A4n4(n1,
13、n1)(n为自然数)”九、填空题90或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根为1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.十、填空题10(2,4)
14、【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P的坐标是(x,-y),进而得出答案【详解】解:点A(2,-4)关于x轴解析:(2,4)【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P的坐标是(x,-y),进而得出答案【详解】解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4)故答案为:(2,4)【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键十一、填空题11a=b【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b【详解】
15、根据第一、三象限的角平分线上的点的坐标特征,易得a=b.十二、填空题1248【分析】先假设,求得34,由1=138,根据邻补角求出3,再利用即可求出2的度数.【详解】解:若AB/CD,则34,又1+3180,1138,解析:48【分析】先假设,求得34,由1=138,根据邻补角求出3,再利用即可求出2的度数.【详解】解:若AB/CD,则34,又1+3180,1138,3442;EFMN,2+490,248;故答案为:48【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】
16、解:如图所示, 170,341801110,又折叠,3455,解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,ABDE,2355,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题1413【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=
17、7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键十五、填空题152【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值【详解】点P(2m-4,1-2m)在y轴上,2m-4=0,解得m=2故答案为:2【点睛】此题考查点的坐标,熟记y解析:2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值【详解】点P(2m-4,1-2m)在y轴上,2m-4=0,解得m=2故答案为:2【点睛】此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键十六、填空题16【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,
18、4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1解析:【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,2,3,点P的纵坐标规律:,0,0,0,0,确定P2021循环余下的点即可【详解】解:图中是边长为1个单位长度的等边三角形, A2(1,0)A4(2,0)A6(3,0)An中每6个点的纵坐标规律:,0,0,0, 点从原点出发,以每秒个单位长度的速度沿着
19、等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次点P的纵坐标规律:,0,0,-,0,点P的横坐标规律: ,1,2,3,20213366+5,点P2021的纵坐标为,点P2021的横坐标为,点P2021的坐标,故答案为:【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键十七、解答题17(1);(2)【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛】解析:(1);(2)【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)
20、先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键十八、解答题18(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可详解:(1),;(2),x1=4, x=5点睛:本题考查了立方解析:(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可详解:(1),;(2),x1=4, x=5点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握十九
21、、解答题19;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得C解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得CBDE【详解】证明:ABCD,B=C(两直线平行,内错角相等),B+D=180(已知),C+D=180(等量代换),CBDE(同旁内角互补,两直线平行)故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
22、【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明二十、解答题20(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对
23、值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)E(5,7),点E到x轴的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式本题是综合题型,但难度不大二十一、解答题21(1)7;-7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;-7;(2)5;(3)13-【分析】(1)估
24、算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求【详解】解:(1)78,的整数部分是7,小数部分是-7故答案为:7;-7(2)34,23,b2|a-b|+=|-3-2|+=5-+=5(3)23119+12,9+=x+y,其中x是整数,且0y1,x11,y-11+9+-2,x-y11-(-2)13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算估算无理数的整数部分是解题关键二十二、解答题22(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的
25、面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正解析:(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等115=5,边长为,如图(1)(2)斜边长=,故点A表示的数为:;点A表示的相反数为:(3)能,如图拼成的正方形的面积与原面积相等1110=10,边长为考点:1作图应用与设计作图;2图形的剪拼二十三、解
26、答题23(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题
27、即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,AB
28、E=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型二十四、解答题24(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,
29、有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含的代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP90,CP
30、A60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时ACPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点P逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时,ACDP
31、,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为18秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPMCPAAP
32、N90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键二十五、解答题25(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可
33、得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识