1、人教中学七年级下册数学期末测试题(附解析)一、选择题125的平方根是()A5B5CD52四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是()ABCD3在平面直角坐标系中,点A(1,2021)在( )A第一象限B第二象限C第三象限D第四象限4下列命题中是假命题的是( )A等角的补角相等B平行于同一条直线的两条直线平行C对顶角相等D同位角相等5直线,直线与,分别交于点,若,则的度数为( )ABCD6小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1道B2道C3道D4道7如图,直线l1l2且与直线l3相交于A、C两点过点A作ADAC交直线l2于点
2、D若BAD35,则ACD()A35B45C55D708在平面直角坐标系中,对于点P(x,y),我们把点P(1y,x1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到点A1、A2、A3、A4,若点A1的坐标为(3,2),则点A2020的坐标为()A(3,2)B(1,2)C(1,2)D(3,2)九、填空题9计算:的结果为_十、填空题10点A(2,1)关于x轴对称的点的坐标是_十一、填空题11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度十二、填空题12如图,直线,则_十三、填空题13把一张长方形纸条按如图所示折叠
3、后,若,则_;十四、填空题14阅读下列解题过程:计算:解:设则由-得,运用所学到的方法计算:_.十五、填空题15点关于轴的对称点的坐标是_十六、填空题16如图,在平面直角坐标系中,动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是_十七、解答题17计算下列各题:(1) (2).十八、解答题18求下列各式中的 (1) (2)十九、解答题19完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H已知,对和说明理由理由:(已知),( ),(等量代换)( )( )(已知),
4、( )( )二十、解答题20如图,在平面直角坐标系中,的三个顶点的坐标分别是,(1)求出的面积;(2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标二十一、解答题21已知:是的整数部分,是的小数部分求:(1),值(2)的平方根二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3
5、)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数二十四、解答题24综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由二十五、解答题25如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,
6、在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互余三角形”,请直接写出的度数【参考答案】一、选择题1A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:(5)22525的平方根5故选A【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火
7、柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C【点睛】本题考查了平移,掌握理解平移的概念是解题关键3D【分析】根据各象限内点的坐标特征解答【详解】解:点A(1,-2021),A点横坐标是正数,纵坐标是负数,A点在第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分
8、别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据等角的补角,平行线的性质,对顶角的性质,进行判断【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识5B【分析】由对顶角相等得DFE=55,然后利用平行线的性质,得到BEF=125,即可求出的度数【详解】解:由题意,根据对顶角相等,则,;故选
9、:B【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7C【分析】由题意易得CAD=90,则有CAB=125,然后根据平行线的性质可求解【详解】解:ADAC,CAD=90,BAD35,CAB=BAD+CAD=125,l1l2,ACD+CAB=180,ACD55;故选C【点睛】本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键8D【分析】根
10、据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),以此类推,每4个点为一个循环,20204=505,点A2020的坐标与A4的坐标相同,为(3,-2)故选D.【点睛】本题考查了规律型的点的坐标,从已知条件
11、得出循环规律是解题的关键九、填空题96【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数十、填空题10(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本解析:(2,1)
12、【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:101【分析】
13、直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD是ABC的一条角平分线,ABD=29,ADB=1805029=101.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.十二、填空题12120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】解析:120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答
14、案为: 【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本
15、题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14.【分析】设S=,等号两边都乘以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:.【分析】设S=,等号两边都乘以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决十五、填空题15【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故
16、点的坐标为:,故答案为:解析:【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:【点睛】本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键十六、填空题16【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头解析:【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特
17、点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到,可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,经过第2021次运动后,动点P的坐标为;故答案为【点睛】本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律十七、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先
18、化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+十八、解答题18(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),解析:(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键十九、解答题19对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错
19、角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定ADBC,进而得到ADE=C,再根据内错角相等,两直解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定ADBC,进而得到ADE=C,再根据内错角相等,两直线平行,即可得到ABCD【详解】证明:1=2(已知)1=AGH(对顶角相等)2=AGH(等量代换)ADBC(同位角相等,两直线平行)ADE=C(两直线平行,同位角相等)A=C(已知)ADE=AABCD(内错角相等,两直线平行)【点睛】本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的
20、数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系二十、解答题20(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)在平面直角坐标系中,的三个顶点的坐标分别是,AC=3,BC=2,;(2)A(-3,2),
21、A2(0,-2),A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的,B2,C2的坐标分别为(3,0),(3,-2),如图所示,即为所求【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解二十一、解答题21(1),(2)【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答【详解】 ,整数部分,小数部分(2)原式,则的平方根为【点睛】此题解析:(1),(2)【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答【详解】 ,整数部分,小数部分(2)原式
22、,则的平方根为【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 c
23、m,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFF
24、ND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFN
25、D180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键二十四、解答题24(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得
26、2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判
27、定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键二十五、解答题25(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:2A+ABC=90;A+2APB=90;2APB+ABC=90;2A+APB=90,由三角形内角和定理
28、和外角的性质结合“准互余三角形”的定义,即可求出答案【详解】(1)证明:在中,BD是的角平分线,是“准互余三角形”;(2),是“准互余三角形”,故正确;, ,不是“准互余三角形”,故错误;设三角形的三个内角分别为,且,三角形是“准互余三角形”,或,“准互余三角形”一定是钝角三角形,故正确;综上所述,正确,故答案为:;(3)APB的度数是10或20或40或110;如图,当2A+ABC=90时,ABP是“准直角三角形”,ABC=50,A=20,APB=110;如图,当A+2APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,APB=40;如图,当2APB+ABC=90时,ABP是“准直角三角形”,ABC=50,APB=20;如图,当2A+APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,所以A=40,所以APB=10;综上,APB的度数是10或20或40或110时,是“准互余三角形”【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解