1、人教七年级下册数学期末测试(含解析)一、选择题1如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A1与2是对顶角B1与3是同旁内角C3与4是同位角D2与3是内错角2下列图形中,哪个可以通过图1平移得到( )ABCD3在直角坐标系中内点在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5如图,直线,点在直线上,下列结论正确的是( )ABCD6下列叙述中,1的立方根为1;4的平方根为2;8立方根是2;的算术平方根为正确的是( )ABCD7
2、如图,分别交,于点,若,则的度数为( )ABCD8如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2)把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A(1,0)B(1,2)C(1,1)D(1,1)九、填空题9若a、b为实数,且满足|a2|+0,则ab的立方根为_十、填空题10平面直角坐标系中,点关于轴的对称点是_十一、填空题11如图已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为_十二、填空题12如图,直线ab,直线c与直线
3、a,b分别交于点D,E,射线DF直线c,则图中与1互余的角有 _个 十三、填空题13如图,在ABC中,将B、C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若A=82,则MQE= _十四、填空题14已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数依此类推,那么的值是_十五、填空题15在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为_十六、填空题16在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个
4、单位;其行走路线如图所示则点的坐标为_十七、解答题17计算:(1) (2)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19如图已知12,CD,求证:AF(1)请把下面证明过程中序号对应的空白内容补充完整证明:12(已知)又1DMN( )2DMN(等量代换)DBEC( )DBCC180( )CD(已知),DBC( )180(等量代换)DFAC( )AF( )(2)在(1)的基础上,小明进一步探究得到DBCDEC,请帮他写出推理过程二十、解答题20如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各
5、点的坐标;(2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积二十一、解答题21阅读下面的文字,解答问题:大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分又例如,因为,即,所以的整数部分为2,小数部分为请解答: (1)的整数部分为 ;小数部分为 ;(
6、2)如果的整数部分为a,的小数部分为b,求的值二十二、解答题22如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值二十三、解答题23(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数二十四、解答题24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在
7、线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数二十五、解答题25在中,点在直线上运动(不与点、重合),点在射线上运动,且,设(1)如图,当点在边上,且时,则_,_;(2)如图,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图中画出图形,并给予证明(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1C解析:C【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可【详解】解:A、1与2是邻补角,故原题说法错误;B、1与3不
8、是同旁内角,故原题说法错误;C、3与4是同位角,故原题说法正确;D、2与3不是内错角,故原题说法错误;故选:C【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义2A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考点:平移的性质解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考点:平移的性质3D【分析】根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答【详解】解:点M(a,b)在第三象限,a0,b
9、0,-a0,那么点N(-a,b)所在的象限是:第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考
10、点,掌握相关知识是解题关键5D【分析】根据两直线平行,同旁内角互补可得1AOF180,再根据两直线平行,内错角相等可得3AOC,而通过AOFAOC-2,整理可得13-2180【详解】解:ABEF,1AOF180,CDAB,3AOC,又AOFAOC2=3-2,13-2180故选:D【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键6D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可【详解】1的立方根为1,错误;4的平方根为2,正确;8的立方根是2,正确;的算术平方根是,正确;正确的是,故选:D【点睛】本题考查了平方根、算术平方根和立方根解题的关键是掌握平
11、方根、算术平方根和立方根的定义7B【分析】根据平行线的性质和对顶角相等即可得2的度数【详解】解:,2FHD,FHD139,239故选:B【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质8B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形解析:B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形,长方形的周长,细线的另一端落在点上,即故选:【
12、点睛】本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键九、填空题9-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:1【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值十、填空题10【分析】根据平面直
13、角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;十一、填空题11120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:
14、和的角平分线相交于,又,设,在四边形中,解析:120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,故答案为:【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键十二、填空题124【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=90,1解析:4【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=9
15、0,1+3=90即与1互余的角有2,3又ab3=5,2=41互余的角有4,5与1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等十三、填空题13【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性
16、质十四、填空题14【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+解析:【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+3=-3-+3故答案为:【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值十五、填空题15(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案【详解】解:,a=3,b=4,A(0,3),B(4,0),C(4,6),AB
17、C的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案【详解】解:,a=3,b=4,A(0,3),B(4,0),C(4,6),ABC的面积=64=12,四边形ABOP的面积=AOP的面积+AOB的面积=3(-m)+34=6-m,由题意得,6-m=12,解得,m=-4,点P的坐标为(-4,1),故答案为:(-4,1)【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键十六、填空题16(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A20
18、21的坐标【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,蚂蚁每次移动1个单位,OA4=2,OA8=4,A4(2,0),A8(4,0),OA4n=4n2=2n,点A4n的坐标为(2n,0)20204=505,点A2020的坐标是(1010,0)点A2021的坐标是(1010,1)故答案为:(1010,1)【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键十七、解答题17(1)
19、1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式 (2)原式 十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方
20、公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到2=DMN,由此判定DBEC,由平行线的性质及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代
21、换得到2=DMN,由此判定DBEC,由平行线的性质及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解【详解】解:(1)证明:1=2(已知),又1=DMN(对顶角相等),2=DMN(等量代换),DBEC(同位角相等,两直线平行 ),DBC+C=180( 两直线平行,同旁内角互补),C=D(已知),DBC+(D)=180(等量代换),DFAC( 同旁内角互补,两直线平行),A=F(两直线平行,内错角相等 )(2)DBEC,DBC+C=180,DEC+D=180,C=D,DBC=DEC【点睛】此题考查了平行线的判定与性质,熟练掌握平行
22、线的判定定理与性质定理是解题的关键二十、解答题20(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算
23、三角形ABC的面积【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的A1B1C1如下图所示:;(3)【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21(1)9,;(2)15
24、【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即的整数部分为9,小数部分为(2),即的整数部解析:(1)9,;(2)15【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即的整数部分为9,小数部分为(2),即的整数部分为5,小数部分为,【点睛】此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键二十二、解答题22(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的
25、估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长二十三、解答题23(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,
26、进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF
27、=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性
28、质与判定,灵活运用平行线的性质与判定是解题的关键二十四、解答题24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解
29、】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键二十五、解答题25(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC解析:(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC,求出BA
30、D在ABC中利用三角形内角和定理求出ABC=ACB=40,根据三角形外角的性质得出ADC=ABC+BAD=100,在ADE中利用三角形内角和定理求出ADE=AED=70,那么CDE=ADC-ADE=30;(2)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACB-AED=,再由BAD=DAC-BAC得到BAD=n-100,从而得出结论BAD=2CDE;(3)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACD-AED=,再由BAD=BAC+DAC得到B
31、AD=100+n,从而得出结论BAD=2CDE【详解】解:(1)BAD=BAC-DAC=100-40=60在ABC中,BAC=100,ABC=ACB,ABC=ACB=40,ADC=ABC+BAD=40+60=100DAC=40,ADE=AED,ADE=AED=70,CDE=ADC-ADE=100-70=30故答案为60,30(2)BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40在ADE中,DAC=n,ADE=AED=,ACB=CDE+AED,CDE=ACB-AED=40-=,BAC=100,DAC=n,BAD=n-100,BAD=2CDE(3)成立,BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40,ACD=140在ADE中,DAC=n,ADE=AED=,ACD=CDE+AED,CDE=ACD-AED=140-=,BAC=100,DAC=n,BAD=100+n,BAD=2CDE【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键