资源描述
人教中学七年级下册数学期末试题(含解析)
一、选择题
1.的平方根是()
A.- B. C. D.
2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
3.在平面直角坐标系中,下列各点位于第三象限的是( )
A. B. C. D.
4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.3个 B.2个 C.1个 D.0个
5.一副直角三角尺叠放如图1所示,现将45°的三角尺固定不动,将含30°的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则()其它所有可能符合条件的度数为( )
A.60°和135° B.60°和105° C.105°和45° D.以上都有可能
6.若a2=16,=2,则a+b的值为( )
A.12 B.4 C.12或﹣4 D.12或4
7.如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是( )
A.①②③ B.①②④ C.①③④ D.①②③④
8.已知点,,点,,点,是线段的中点,则,.在平面直角坐标系中有三个点A(1,),B(,),C(0,1),点P(0,2)关于点A的对称点(即,,三点共线,且,关于点的对称点,关于点的对称点,按此规律继续以,,三点为对称点重复前面的操作.依次得到点,,,则点的坐标是( )
A.(0,0) B.(0,2) C.(2,) D.(,2)
九、填空题
9.若|y+6|+(x﹣2)2=0,则y x=_____.
十、填空题
10.已知点与点关于轴对称,则的值为__________.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.
十三、填空题
13.如图所示是一张长方形形状的纸条,,则的度数为__________.
十四、填空题
14.一列数a1,a2,a3,…,an,其中a1=﹣1,a2=,a3=,…,an=,则a2=_____;a1+a2+a3+…+a2020=_____;a1×a2×a3×…×a2020=_____.
十五、填空题
15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________.
十六、填空题
16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.求下列各式中x的值.
(1)4x2﹣25=0;
(2)(2x﹣1)3=﹣64.
十九、解答题
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
二十、解答题
20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,.
(1)将向右平移4个单位长度得到,画出平移后的;
(2)将向下平移5个单位长度得到,画出平移后的;
(3)直接写出三角形的面积为______平方单位.(直接写出结果)
二十一、解答题
21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分;
(1)求a+b+c的值;
(2)求3a﹣b+c的平方根.
二十二、解答题
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现:
(1)如图1.若,求的度数;
(2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由.
(3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
二十四、解答题
24.已知,将一副三角板中的两块直角三角板如图1放置,,,,.
(1)若三角板如图1摆放时,则______,______.
(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;
(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数.
二十五、解答题
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得.
【详解】
解:因为,
所以的平方根是,
故选:C.
【点睛】
本题考查了平方根,熟练掌握平方根的定义是解题关键.
2.B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
解析:B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
【点睛】
本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.
3.D
【分析】
根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.
【详解】
解:A、(0,3)在y轴上,故本选项不符合题意;
B、(−2,1)在第二象限,故本选项不符合题意;
C、(1,−2)在第四象限,故本选项不符合题意;
D、(-1,-1)在第三象限,故本选项符合题意.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.
【详解】
平面内,垂直于同一条直线的两直线平行;故①正确,
经过直线外一点,有且只有一条直线与这条直线平行,故②正确
垂线段最短,故③正确,
两直线平行,同旁内角互补,故④错误,
∴正确命题有①②③,共3个,
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.D
【分析】
根据题意画出图形,再由平行线的性质定理即可得出结论.
【详解】
解:如图
当∥时,;
当∥时,;
当∥ 时,∵,
∴;
当∥时,∵ ,
∴.
故选:.
【点睛】
本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.
6.D
【分析】
根据平方根和立方根的意义求出a、b即可.
【详解】
解:∵a2=16,
∴a=±4,
∵=2,
∴b=8,
∴a+b=4+8或﹣4+8,
即a+b=12或4.
故选:D.
【点睛】
本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.
7.A
【分析】
根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.
【详解】
③∵AB∥CD,
∴∠BOD=∠ABO=40°,
∴∠COB=180°-40°=140°,
又∵OE平分∠BOC,
∴∠BOE=∠COB=×140°=70°,
故③正确;
①∵OP⊥CD,
∴∠POD=90°,
又∵AB∥CD,
∴∠BPO=90°,
又∵∠ABO=40°,
∴∠POB=90°-40°=50°,
∴∠BOF=∠POF-∠POB=70°-50°=20°,
∠FOD=40°-20°=20°,
∴OF平分∠BOD,
故①正确;
②∵∠EOB=70°,∠POB=90°-40°=50°,
∴∠POE=70°-50°=20°,
又∵∠BOF=∠POF-∠POB=70°-50°=20°,
∴∠POE=∠BOF,
故②正确;
④由①可知∠POB=90°-40°=50°,
∠FOD=40°-20°=20°,
故∠POB≠2∠DOF,
故④不正确.
故结论正确的是①②③,
故选A.
【点睛】
本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.
8.A
【分析】
首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标
【详解】
解:设,
∵,
解析:A
【分析】
首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标
【详解】
解:设,
∵,,且是的中点,
∴解得:,
∴
同理可得:
∴每6个点一个循环,
∵
∴点的坐标是
故选A
【点睛】
此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.
九、填空题
9.36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
解析:36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
十、填空题
10.-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:
解析:-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:-1.
【点睛】
本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系.
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
解析:40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
【点睛】
本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.
十三、填空题
13.5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=
解析:5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=180°-105°=75°,
∴∠2=(180°-75°)÷2=52.5°,
故答案为:52.5°.
【点睛】
此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.
十四、填空题
14., 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===
解析:, 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===2,
a4=﹣1,…,
∵2020÷3=673…1,
∴a1+a2+a3+…+a2020
=(﹣1++2)×673+(﹣1)
=×673+(﹣1)
=﹣
=,
a1×a2×a3×…×a2020
=[(﹣1)××2]673×(﹣1)
=(﹣1)673×(﹣1)
=(﹣1)×(﹣1)
=1,
故答案为:,,1.
【点睛】
本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键.
十五、填空题
15.【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直
解析:
【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直线BC的解析式为,
把,代入得:
,
解得:,
故BC的解析式为,
当时,,
故与轴的交点坐标为;
故答案是.
【点睛】
本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.
十六、填空题
16.(64,4)
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0
解析:(64,4)
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第n列有n个数.则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.
因而第2021个点的坐标是(64,4).
故答案为:(64,4).
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1)x=;(2)x=.
【分析】
(1)利用平方根的定义求解;
(2)利用立方根的定义求解.
【详解】
解:(1)4x2﹣25=0,
4x2=25,
x2=,
x=;
(2)(2x﹣1)3=﹣64
解析:(1)x=;(2)x=.
【分析】
(1)利用平方根的定义求解;
(2)利用立方根的定义求解.
【详解】
解:(1)4x2﹣25=0,
4x2=25,
x2=,
x=;
(2)(2x﹣1)3=﹣64,
2x﹣1=﹣4,
2x=﹣3,
x=.
【点睛】
本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.
十九、解答题
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应
解析:(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.
【详解】
解:(1)平移后的三角形如下图所示;
(2)平移后的三角形如下图所示;
(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,
∴S△ABC
.
【点睛】
本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.
二十一、解答题
21.(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可
解析:(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可解答.
【详解】
解:(1)∵某正数的两个平方根分别是3a-14和a+2,
∴(3a-14)+(a+2)=0,
∴a=3,
又∵b+11的立方根为-3,
∴b+11=(-3)3=-27,
∴b=-38,
又∵,
∴,
又∵c是的整数部分,
∴c=2;
∴a+b+c=3+(-38)+2=-33;
(2)当a=3,b=-38,c=2时,
3a-b+c=3×3-(-38)+2=49,
∴3a-b+c的平方根是±7.
【点睛】
本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°
解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)∵∠1=48°,∠BCA=90°,
∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,
∵a∥b,
∴∠2=∠3=42°;
(2)理由如下:
过点B作BD∥a.如图2所示:
则∠2+∠ABD=180°,
∵a∥b,
∴b∥BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:
过点C 作CP∥a,如图3所示:
∵AC平分∠BAM
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,
又∵a∥b,
∴CP∥b,∠1=∠BAM=60°,
∴∠PCA=∠CAM=30°,
∴∠BCP=∠BCA-∠PCA=90°-30°=60°,
又∵CP∥a,
∴∠2=∠BCP=60°,
∴∠1=∠2.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
二十四、解答题
24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当B
解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.
【详解】
解:(1)作EI∥PQ,如图,
∵PQ∥MN,
则PQ∥EI∥MN,
∴∠α=∠DEI,∠IEA=∠BAC,
∴∠DEA=∠α+∠BAC,
∴α= DEA -∠BAC=60°-45°=15°,
∵E、C、A三点共线,
∴∠β=180°-∠DFE=180°-30°=150°;
故答案为:15°;150°;
(2)∵PQ∥MN,
∴∠GEF=∠CAB=45°,
∴∠FGQ=45°+30°=75°,
∵GH,FH分别平分∠FGQ和∠GFA,
∴∠FGH=37.5°,∠GFH=75°,
∴∠FHG=180°-37.5°-75°=67.5°;
(3)当BC∥DE时,如图1,
∵∠D=∠C=90,
∴AC∥DF,
∴∠CAE=∠DFE=30°,
∴∠BAM+∠BAC=∠MAE+∠CAE,
∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;
当BC∥EF时,如图2,
此时∠BAE=∠ABC=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°;
当BC∥DF时,如图3,
此时,AC∥DE,∠CAN=∠DEG=15°,
∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.
综上所述,∠BAM的度数为30°或90°或120°.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十五、解答题
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.
理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-(∠DHG+∠BGH)
=180°-(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-(180°+∠HAG)
=90°-∠HAG
=90°-(30°+∠FAO+45°)
=52.5°-∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.
展开阅读全文