1、人教版八年级下册数学期末试卷专题练习(解析版)一、选择题1若二次根式有意义,则x的值不可能是()A3B5C4D02以下列各组线段为边长,不能构成直角三角形的是()A6,8,10B2,3,4C1,5,D2,2,23点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A1个B2个C3个D4个4甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,则甲、乙两个同学的数学成绩比较稳定的是( )A甲B乙C甲和乙一样D无法确定5如图1,园丁住宅小区有一块草坪如图所示已知AB=3米,BC=4米,CD=
2、12米,DA=13米,且ABBC,这块草坪的面积是( )A24米2B36米2C48米2D72米26如图,在菱形中,对角线、相交于点,于点,若,则的大小为( )A20B35C55D707如图,在ABC中,D、E分别为AB、AC的中点,点F在DE上,且AFCF,若AC3,BC6,则DF的长为( )A1.5B1C0.5D28一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A4.7B5.0C5.4D5.8二、填空题9若代数式有意义,则的取值范围是_
3、10如图,在菱形ABCD中,AC,BD两对角线相交于点O若BAD60,BD2cm,则菱形ABCD的面积是_cm211在 中,A=90,AB=AC=2,则 BC=_12如图,在中,则_13如图,直线l的解析式为ykx+b(k,b为常数,且k0),若0kx+b1.5,则自变量x的取值范围为_14如图,矩形ABCD的两条对角线相交于点O,若,则AC的长为_15如图,在平面直角坐标系中,点在直线图象上,过点作轴平行线,交直线于点,以线段为边在右侧作正方形,所在的直线交的图象于点,交的图象于点,再以线段为边在右侧作正方形依此类推,按照图中反应的规律,第个正方形的边长是_16如图,将矩形纸片ABCD折叠,
4、使点D与点B重合,点C落在处,折痕为EF,若AB=1,BC=2,则EF=_三、解答题17计算:(1) (2)18由于大风,山坡上的一颗甲树从A点处被拦腰折断,其顶点恰好落在一棵树乙的底部C处,如图所示,已知AB4米,BC13米,两棵树的水平距离是12米,求甲树原来的高度19如图,在正方形网格中,点,都在格点上,若小方格边长为(1)试判断是什么形状,并说明理由;(2)若为边的中点,连接,求的长20如图,在平行四边形ABCD中,ABC的平分线BE交AD于点E,点F是BC边上的一点,且BFAB,连接EF(1)求证:四边形ABFE是菱形;(2)连接AF,交BE于点O,若AB5,BE+AF14,求菱形A
5、BFE的面积21在数学课外学习活动中,嘉琪遇到一道题:已知,求2a28a+1的值他是这样解答的:,(a2)23,即a24a+43a24a12a28a+12(a24a)+12(1)+11请你根据嘉琪的解题过程,解决如下问题:(1)试化简和;(2)化简;(3)若,求4a28a+1的值22我国传统的计重工具秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤)如表中为若干次称重时所记录的一些数据 x(厘米)1247y(斤)0.751.001.502.25(1)在图2中将表x,y的数据通过描点
6、的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?23已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BFDE交线段DE的延长线于F(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:24请你根据学习函数的经验,完成对函数y|x|1的图象与性质的探究下表给出了y与x的几组对应值x321012
7、3ym101012【探究】(1)m ;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是 ;【拓展】(4)函数y1|x|1的图象与函数y|x|1的图象交于两点,当y1y时,x的取值范围是 ;(5)函数y2|x|b(b0)的图象与函数y|x|1的图象围成的四边形的形状是 ,该四边形的面积为18时,则b的值是 25如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4)(1)求G点
8、坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由26在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”已知点,(1)在点,中,_是点A和点O的“等距点”;(2)在点,中,_是线段OA和OB的“等距点”;(3)点为x轴上一点,点P既是点A和点C的“等距点”,又是线段OA和OB的“等距点”当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由;若点P在内,
9、请直接写出满足条件的m的取值范围【参考答案】一、选择题1B解析:B【分析】根据二次根式有意义的条件求出x的范围,进而得出答案【详解】解:根据二次根式有意义的条件得:x+40,x4,故选:B【点睛】本题考查了二次根式有意义的条件,能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围是解题的关键2B解析:B【分析】利用勾股定理的逆定理进行逐一判断即可得到答案.【详解】解:A、,可以构成直角三角形,不符合题意;B、,不可以构成三角形,符合题意;C、,可以构成直角三角形,不符合题意;D、,可以构成直角三角形,不符合题意;故选B.【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于
10、能够熟练掌握勾股定理的逆定理.3C解析:C【解析】【详解】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个故选C考点:平行四边形的判定4A解析:A【解析】【分析】平均成绩相同情况下,方差越小越稳定即可求解【详解】解:甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,甲同学的数学成绩比较稳定故选择A【点睛】本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键5B解析:B【分析】连接AC,先根据勾股定理求出AC的长,然后利用
11、勾股定理的逆定理证明ACD为直角三角形从而用求和的方法求面积【详解】连接AC,则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以ACD=90这块草坪的面积=SRtABC+SRtACD=ABBC+ACDC=(34+512)=36米2故选B【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点6C解析:C【解析】【分析】由菱形的性质得ACBD,ABCADC110,ABOABC55,再由直角三角形的性质求出BOE35,即可求解【详解】解:四边形ABCD是菱形,ACBD,ABCADC110,ABOABC55,OEAB,OEB90,BOE905535,AOE903555,故选:C【点睛】
12、本题考查了菱形的性质、直角三角形的性质等知识;熟练掌握菱形典型在,求出ABO55是解题的关键7A解析:A【解析】【分析】根据三角形中位线定理求出,根据直角三角形的性质求出,计算即可【详解】解:、分别为、的中点,为的中点,故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半8B解析:B【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为
13、v,从乙地到甲地的时间为t,则 解得,t1.8a3.2+1.85(小时),故选B【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键二、填空题9【解析】【分析】根据二次根式有意义的条件求解即可【详解】有意义,解得故答案为:【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键10A解析:2【解析】【分析】由菱形的性质可得ABAD,ACBD,AOCO,BODOBD1,可证ABD是等边三角形,可得ABBD4,由勾股定理可求AO的长,即可求解【详解】解:四边形ABCD是菱形,ABAD,ACBD,AOCO,BO
14、DOBD1cm,BAD60,ABD是等边三角形,ABBD2cm,AC2cm,菱形ABCD的面积ACBD2cm2,故答案为:2【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.11【解析】【分析】直接利用勾股定理即可得【详解】在 中,故答案为:【点睛】本题考查了勾股定理,熟记勾股定理是解题关键12A解析:8【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可【详解】解:ABC=90,AD=DC,BD=4,AC=2BD=8故答案为:8【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半132x1【分析
15、】把(1,1.5),(2,0)代入ykx+b解不等式即可得到结论【详解】解:把(1,1.5),(2,0)代入ykx+b得解得:直线l的解析式为yx+1,0kx+b1.5,0x+11.5,解得:2x1,自变量x的取值范围为2x1,故答案为:2x1【点睛】本题主要考查了一次函数与一元一次不等式组,解题的关键在于能够准确求出一次函数的解析式.14A解析:6【分析】根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答【详解】解:在矩形ABCD中,又,故答案为6【点睛】此题考查矩形的性质,解题关键在于利用了矩形的对
16、角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质15【分析】通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,通过探究规律,利用规律解决问题即可【详解】解:由题意,第一个正方形的边长为2,第二个正方解析:【分析】通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,通过探究规律,利用规律解决问题即可【详解】解:由题意,第一个正方形的边长为2,第二个正方形的边长为6,即:, ,第三个正方形的边长为18,即:, ,可得,第2020个正方形的边长为故答案为: 【点睛】本题考查一次函数图像上的点的特征,规律型问题,解题的关键是学会探究规律的方法,属于中考常考
17、题型16【分析】设,在中利用勾股定理求出x,再去证明BE=BF,再过点F作于点G,在中用勾股定理求EF长度【详解】设,AD=BC=2,折叠,,在中,得,解得,折叠,解析:【分析】设,在中利用勾股定理求出x,再去证明BE=BF,再过点F作于点G,在中用勾股定理求EF长度【详解】设,AD=BC=2,折叠,,在中,得,解得,折叠,如图,作于点G,则,在中,故答案是:【点睛】本题考查折叠问题,解题的关键是利用折叠的性质,以及勾股定理方程思想去求边长,再想办法做辅助线构造直角三角形求线段长度三、解答题17(1);(2)0【分析】(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可;(2
18、)利用二次根式的四则运算法则求解即可【详解】(1)原式,;(2)原式,解析:(1);(2)0【分析】(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可;(2)利用二次根式的四则运算法则求解即可【详解】(1)原式,;(2)原式,【点睛】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关运算法则进行求解1819米【分析】如图所示,过点C作CDAB交AB延长线于D,则根据题意可以得到CD=12米,根据勾股定理即可求出BD的长,再利用勾股定理求出AC的长即可得到AC+AB的长.【详解】解:如图所解析:19米【分析】如图所示,过点C作CDAB交AB延长线于D,则根据题意
19、可以得到CD=12米,根据勾股定理即可求出BD的长,再利用勾股定理求出AC的长即可得到AC+AB的长.【详解】解:如图所示,过点C作CDAB交AB延长线于D由题意得:CD=12,AB4米,BC13米在RtBCD中米米在RtACD中米米甲树原来的高度是19米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理.19(1)三角形ABC是直角三角形,理由见解析;(2)【解析】【分析】(1)先利用勾股定理分别求出AB,BC,AC的长,然后利用勾股定理的逆定理求解即可;(2)根据直角三角形斜边上的中线等于斜边解析:(1)三角形ABC是直角三角形,理由见解析;(2)【解析】【分析】(
20、1)先利用勾股定理分别求出AB,BC,AC的长,然后利用勾股定理的逆定理求解即可;(2)根据直角三角形斜边上的中线等于斜边的一半求解即可【详解】解:(1)三角形ABC是直角三角形,理由如下:由题意得:,,三角形ABC是直角三角形;(2)D为BC边的中点,三角形ABC是直角三角形,BAC=90,【点睛】本题主要考查了勾股定理和勾股定理的逆定理,直角三角形斜边上的中线等于斜边的一半,解题的关键在于能够熟练掌握相关知识进行求解20(1)见解析;(2)24【分析】(1)证,则,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边
21、形是平行解析:(1)见解析;(2)24【分析】(1)证,则,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边形是平行四边形,的平分线交于点,四边形是平行四边形,又,平行四边形是菱形;(2)解:由(1)得:四边形是菱形,在中,由勾股定理得:,即,解得:或,当时,则,;当时,则,;菱形的面积【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键21(1),;(2);(3)5【解析】【分析】(1)利用分母有理化计算;(2)先分母有理化,然后合并即可;(3)先将a的值化简为
22、,进而可得到,两边平方得到,然后利用整体代入的方法计算【详解解析:(1),;(2);(3)5【解析】【分析】(1)利用分母有理化计算;(2)先分母有理化,然后合并即可;(3)先将a的值化简为,进而可得到,两边平方得到,然后利用整体代入的方法计算【详解】解:(1),故答案为:,;(2)原式;(3),即【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰22(1),4.5斤;(2)最多13斤【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,
23、设函数关系式为,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平解析:(1),4.5斤;(2)最多13斤【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,设函数关系式为,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平距离为50厘米可知,求出y的取值范围即可【详解】解:(1)利用描点法画出图像如下,观察图象可知x,y满足一次函数的变化关系,设,把代入可得: ,解得,当时,秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)由题意可得 ,所以可得:,即,这杆秤的可称物重范围是13斤以内【点睛】本题考查了一次函数的图象及应用,待定系
24、数法,一元一次不等式等知识,利用数形结合的思想是解题的关键23(1)30;(2)不变;45;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角解析:(1)30;(2)不变;45;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角和即可求BEF=.(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得ABGADH.从而求得矩形AGFH是正方形,根据正方形的性质证得AHDDIC,从而得出
25、结论【详解】(1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD,又BE=CE,BE=CE=BC,BEC是等边三角形,BCE=60.又BCD=90,=DCE=30.(2)BEF的度数不发生变化.在CED中,CE=CD,CED=CDE=,在CEB中,CE=CB,BCE=,CEB=CBE=,BEF=.(3)过点A作AGDF与BF的延长线交于点G,过点A作AHGF与DF交于点H,过点C作CIDF于点I 易知四边形AGFH是平行四边形,又BFDF,平行四边形AGFH是矩形.BAD=BGF=90,BPF=APD ,ABG=ADH.又AGB=AHD=90,AB=AD,ABGADH.AG=AH
26、 ,矩形AGFH是正方形.AFH=FAH=45,AH=AFDAH+ADH=CDI+ADH=90DAH=CDI又AHD=DIC=90,AD=DC,AHDDICAH=DI,DE=2DI,DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型24(1)2;(2)见解析;(3)x0;(4)1x1;(5)正方形;5【解析】【分析】(1)把x3代入y|x|1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x0;(4)1x1;(5)正方形;5【
27、解析】【分析】(1)把x3代入y|x|1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1|x|1的图象,根据图象即可得当y1y时,x的取值范围;(5)取b3,在同一平面直角坐标系中画出y2|x|3的图象,结合y1|x|1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解【详解】解:(1)把x3代入y|x|1,得m312,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x0,故答案为:x0;(4)画出函数y1|x|1的图象如图,由图象得:当y1y时,x的取值范围为1x1,故答案为:1x
28、1;(5)取b3,在同一平面直角坐标系中画出y2|x|3的图象,如图:由图象得:y1|x|1的图象与函数y|x|1的图象围成的四边形的形状是正方形,y2|x|3的图象与函数y|x|1的图象围成的四边形的形状是正方形,函数y2|x|b(b0)的图象与函数y|x|1的图象围成的四边形的形状是正方形,y|x|1,y2|x|b(b0),y与y2的图象围成的正方形的对角线长为b1,该四边形的面积为18,(b1)218,解得:b5(负值舍去),故答案为:正方形,5【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想正确画出函数的图象是解题的关键25(1)
29、G(0,4-);(2);(3).【解析】【分析】1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在RtAGF中,利用勾股定理求出 ,那么解析:(1)G(0,4-);(2);(3).【解析】【分析】1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在RtAGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);(2)先在RtAGF中,由 ,得出AFG=60,再由折叠的性质得出GFE=BFE=60,解RtBFE,求出BE=BF tan60=2,那么CE=4-2,E(3,4-2).设直线
30、EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)F(1,4),B(3,4),AF=1,BF=2,由折叠的性质得:GF=BF=2,在RtAGF中,由勾股定理得,B(3,4),OA=4,OG=4-,G(0,4-);(2)在RtAGF中, ,AFG=60,由折叠的性质得知:GF
31、E=BFE=60,在RtBFE中,BE=BFtan60=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,E(3,4-2),F(1,4), 解得 ;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.GN1EF,直线EF的解析式为直线GN1的解析式为,当y=0时, .GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),M,( ,);FG为平行四边形的一边,N
32、点在x轴上,GFNM为平行四边形,如图2所示.GFN2M2为平行四边形,GN与FM2互相平分.G(0,4-),N2点纵坐标为0GN:中点的纵坐标为 ,设GN中点的坐标为(x,).GN2中点与FM2中点重合, x= .GN2的中点的坐标为(),.N2点的坐标为(,0).GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),M2();FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.GFN3M3为平行四边形,.GN3与FM3互相平分.G(0,4-),N2点横坐标为0,.GN3中点的横坐标为0,F与M3的横坐标互为相反数,M3的横坐标为-1,当x=-1时,y=
33、,M3(-1,4+2);FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4G(0,4-),F(1,4),FG中点坐标为(),M4N4的中点与FG的中点重合,且N4的纵坐标为0,.M4的纵坐标为8-.5-45解方程 ,得 M4().综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。【点睛】本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点
34、在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.26(1)点E;(2)点H;(3)存在,点P的坐标为(7,7);【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)根据点P是线段OA和OB的“等距点解析:(1)点E;(2)点H;(3)存在,点P的坐标为(7,7);【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)根据点P是线段OA和OB的“等距点”,可设点P(x,x)且x0,再由点P是点A和点C的“等距点”,可得 ,从而得到 ,即可求解;根据点P是线段OA和OB的“等
35、距点”, 点P在AOB的角平分线上,可设点P(a,a)且a0,根据OA=OB,可得OP平分线段AB,再由点P在内,可得 ,根据点P是点A和点C的“等距点”,可得 ,从而得到,整理得到,即可求解【详解】解:(1)根据题意得: , , , , , , ,点是点A和点O的“等距点”;(2)根据题意得:线段OA在x轴上,线段OB在y轴上,点到线段OA的距离为1,到线段OB的距离为2,点到线段OA的距离为2,到线段OB的距离为2,点到线段OA的距离为6,到线段OB的距离为3,点到线段OA的距离和到线段OB的距离相等,点是线段OA和OB的“等距点”;(3)存在,点P的坐标为(7,7),理由如下:点P是线段
36、OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,可设点P(x,x)且x0,点P是点A和点C的“等距点”, ,点C(8,0), ,解得: ,点P的坐标为(7,7);如图,点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,点P在AOB的角平分线上,可设点P(a,a)且a0,OA=OB=6,OP平分线段AB,点P在内,当点P位于AB上时, 此时点P为AB的中点,此时点P的坐标为 ,即 , ,点P是点A和点C的“等距点”, ,点,整理得: ,当 时,点C(6,0),此时点C、A重合,则a=6(不合题意,舍去),当时, ,解得: ,即若点P在内,满足条件的m的取值范围为【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键