收藏 分销(赏)

人教版数学八年级下册数学期末试卷专题练习(解析版).doc

上传人:w****g 文档编号:1893980 上传时间:2024-05-11 格式:DOC 页数:30 大小:874.04KB
下载 相关 举报
人教版数学八年级下册数学期末试卷专题练习(解析版).doc_第1页
第1页 / 共30页
人教版数学八年级下册数学期末试卷专题练习(解析版).doc_第2页
第2页 / 共30页
人教版数学八年级下册数学期末试卷专题练习(解析版).doc_第3页
第3页 / 共30页
人教版数学八年级下册数学期末试卷专题练习(解析版).doc_第4页
第4页 / 共30页
人教版数学八年级下册数学期末试卷专题练习(解析版).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、人教版数学八年级下册数学期末试卷专题练习(解析版)一、选择题1若代数式有意义,应满足的条件是( )ABCD2下列各组数中,能构成直角三角形的一组是( )A2,3,4B3,4,5C5,12,16D6,8,123下列说法不正确的是( )A对角线互相垂直的四边形是菱形B有三个角是直角的四边形是矩形C有一组邻边相等的矩形是正方形D两组对边分别相等的四边形是平行四边形4如果样本方差,那么这个样本的平均数和样本容量分别是( )A20,20B20,18C18,18D18,205如图1,园丁住宅小区有一块草坪如图所示已知AB=3米,BC=4米,CD=12米,DA=13米,且ABBC,这块草坪的面积是( )A2

2、4米2B36米2C48米2D72米26如图,在平行四边形中,将沿折叠后,点恰好落在的延长线上的点处若,则的周长为( )ABCD7ABCD的对角线AC、BD相交于点O,AE平分BAD交BC于点E, 且ADC60,ABBC,连接OE有下列结论:CAD=30; SABCD = ABAC ; OB=AB; OE=AB其中成立的有( )A1个B2个C3个D4个8在平面直角坐标系中,定义:已知图形W和直线,如果图形W上存在一点Q,使得点Q到直线的距离小于或等于k,则称图形W与直线“k关联”已知线段AB,其中点,若线段AB与直线“关联”,则b的取值范围是( )A-1bB0b4C0b6Db6二、填空题9使代数

3、式有意义的x的取值范围是_10若菱形的两条对角线的长分别为6和10,则菱形的面积为_11直角三角形的直角边长分别为,斜边长为,则_12如图,在矩形中,对角线,相交于点,则的长是_13某生态体验园推出了甲、乙两种消费卡甲、乙两卡所需费用,(单位:元)与入园次数(单位:次)的函数关系如图所示当满足_时,14如图,在中,AD,CD分别平分和,若从以下三个条件:;中选择一个作为已知条件,则能使四边形ADCE为菱形的是_(填序号)15如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止图2是的面积与时间的图像,则b的值是_

4、16直角三角形纸片的两直角边长分别为6,8现将如图那样折叠,使点A与点B重合,折痕为则的值是_三、解答题17计算:(1)();(2)618有一架米长的梯子搭在墙上,刚好与墙头对齐,此时梯脚与墙的距离是米 (1)求墙的高度? (2)若梯子的顶端下滑米,底端将水平动多少米?19在ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即三个顶点都在小正方形的顶点处,如图1所示,这样不需要求ABC的高,而借用网格就能计算出它的面积) (1)请将ABC的面积直接填写在横线上 (2)我们把上述求ABC

5、面积的方法叫做构图法,若ABC三边的长分别为,2(a0),请在图中给出的正方形网格内(每个小正方形的边长为a)画出相应的ABC(其中一条边已经画好),并求出它的面积20如图,在ABC中,AB=AC将ABC沿着BC方向平移得到DEF,其中点E在边BC上,DE与AC相交于点O(1)求证:OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由21先观察下列等式,再回答问题: =1+1=2;=2+ =2 ;=3+=3;(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n(n 为正整数)表示的等式,并用所学知识证明22

6、某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费如图是居民每户每月的水(自来水)费(元)与所用的水(自来水)量(吨)之间的函数图象根据下面图象提供的信息,解答下列问题:(1)当时,求与之间的函数关系式;(2)已知某户居民上月水费为91元,求这户居民上月的用水量;(3)当一户居民在某月用水为15吨时,求这户居民这个月的水费23共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF连结BH,BG,求的值;当四边形BCHF为菱形时,直接写出BH的长24如图在平面直角坐标系之中,点为坐标原点

7、,直线分别交x、y轴于点、(1)如图1,点是直线上不同于点的点,且则点的坐标为_(2)点是直线外一点,满足,求出直线的解析式(3)如图2,点是线段上一点,将沿直线翻折,点落在线段上的点E处,点M在射线上,在x轴的正半轴上是否存在点N,使以M、A、N、B为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由25如图,ABC中,BABC,COAB于点O,AO4,BO6(1)求BC,AC的长;(2)若点D是射线OB上的一个动点,作DEAC于点E,连结OE当点D在线段OB上时,若AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长设DE交直线BC于点F,连结OF,CD,若S

8、OBF:SOCF1:4,则CD的长为 (直接写出结果)26定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。(1)如图1,损矩形ABCD,ABCADC90,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:ABC和ABD有公共边AB,在AB同侧有ADB和ACB,此时ADBACB;再比如ABC和BCD有公共边BC,在CB同侧有BAC和BDC,此时BACBDC。请再找一对这样的角来 (2)如图2,ABC中,ABC90,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD

9、,当BD平分ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。(3)在第(2)题的条件下,若此时AB,BD,求BC的长。【参考答案】一、选择题1A解析:A【分析】根据二次根式根号下的数大于等于零即可求解【详解】解:有意义,解得:,故选A【点睛】本题考查了二次根式以及一元一次不等式的解法,掌握二次根式根号下数的取值范围与一元一次不等式解法即可解题2B解析:B【分析】先求出两小边的平方和,再求出最长边的平方,看看是否相等即可.【详解】解:A、223242,以2,3,4为边不能组成直角三角形,故本选项不符合题意;B、324252,以3,4,5为边能组成直角三角形,故本选项符合题意;C、52

10、122162,以5,12,16为边不能组成直角三角形,故本选项不符合题意;D、6282122,以6,8,12为边不能组成直角三角形,故本选项不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,即a2b2c2,那么这个三角形是直角三角形3B解析:B【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可【详解】解:A、两组对边分别平行的四边形是平行四边形,不符合题意;B、对角线相等且平分的四边形是矩形,符合题意;C、对角线互相平分且垂直的四边形是菱形,不符合题意;D、有一组邻边

11、相等的矩形是正方形,不符合题意,故选:B【点睛】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键4D解析:D【解析】【分析】根据方差的计算公式,即可求得平均数和样本容量【详解】解:,其中为平均数,为样本容量,又,即平均数为18,样本容量为20故选D【点睛】此题考查了方差的计算公式,由方差公式求解平均数和样本容量,熟练掌握方差公式中各字母的意义是解题的关键5B解析:B【分析】连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明ACD为直角三角形从而用求和的方法求面积【详解】连接AC,则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以ACD=90这

12、块草坪的面积=SRtABC+SRtACD=ABBC+ACDC=(34+512)=36米2故选B【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点6D解析:D【解析】【分析】根据平行四边形的性质以及折叠的性质,即可得到,再根据是等边三角形,即可得到的周长为【详解】由折叠可得,四边形是平行四边形 ,又,由折叠可得,是等边三角形,的周长为,故选:D【点睛】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定,解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等7C解析:C【解析】【分析】由四边形ABCD是平行四边形,得到ABC=

13、ADC=60,BAD=120,根据AE平分BAD,得到BAE=EAD=60推出ABE是等边三角形,由于AB=BC,得到AE=BC,得到ABC是直角三角形,于是得到CAD=30,故正确;由于ACAB,得到SABCD=ABAC,故正确,根据AB=BC,OB=BD,且BDBC,得到ABOB,故错误;根据三角形的中位线定理得到OE=AB,故正确【详解】四边形ABCD是平行四边形,ABC=ADC=60,BAD=120,AE平分BAD,BAE=EAD=60ABE是等边三角形,AE=AB=BE,AB=BC,AE=BC,BAC=90,CAD=30,故正确;ACAB,SABCD=ABAC,故正确,AB=BC,O

14、B=BD,BDBC,ABOB,故错误;CE=BE,CO=OA,OE=AB,故正确故正确,共3个故选C【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键8C解析:C【分析】如图(见解析),先画出图形,再根据定义求出两个临界位置时b的值,由此即可得【详解】如图,过点B作直线的垂线,垂足为点D,连接OA,延长AB交直线于点C由题意,有以下两个临界位置:点A到直线的距离等于,当直线经过原点O时,即为点A到直线的距离,此时点B到直线的距离等于,即轴,且点C的纵坐标与点A的纵坐标相同,即为1是等腰直角三角形点C的横坐标

15、为将点代入直线得:解得则b的取值范围是故选:C【点睛】本题考查了等腰直角三角形的判定与性质、一次函数的几何应用等知识点,理解新定义,求出两个临界位置时b的值是解题关键二、填空题9x-3【解析】【分析】先根据分式分母不为零,再根据二次根式被开方数不为零得出不等式计算即可【详解】解:有题意可知: 则x+30x-3故答案为:x-3【点睛】本题考查分式有意义的条件,二次根式有意义的条件是一道复合型的题目,要考虑前面是重点1030【解析】【分析】因为菱形的对角线互相垂直,互相垂直的四边形的面积等于对角线乘积的一半【详解】解:菱形的面积为:故答案为:30【点睛】本题考查菱形的性质,关键知道菱形的对角线互相

16、垂直,然后根据面积等于对角线乘积的一半求出结果11289【解析】【分析】根据勾股定理计算即可【详解】根据勾股定理得:斜边的平方=x2=82+152=289故答案为:289【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键12A解析:3【分析】利用矩形的性质结合条件证明AOB是等边三角形即可解决问题【详解】解:四边形ABCD是矩形,OA=OC=OB=OD=3,AOB=60,AOB是等边三角形,AB=3,BC=3,故答案为:3【点睛】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识,发现AOB是等边三角形

17、是突破点13x10【分析】运用待定系数法,即可求出y与x之间的函数表达式,联立方程组解答即可求出两直线的交点坐标,根据函数图象回答即可【详解】解:设y甲=k1x,根据题意得5k1=100,解得k1=20,y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,y乙=10x+100;解方程组,解得,两直线的交点坐标为(10,200);根据图象可知:当x10时,故答案为:x10【点睛】本题主要考查了一次函数的应用、学会利用方程组求两个函数图象的解得交点坐标,正确由图象得出正确信息是解题关键14B解析:【分析】当BA=BC时,四边形ADCE是菱形只要证明四边形AD

18、CE是平行四边形,DA=DC即可解决问题【详解】解:当时,四边形ADCE是菱形理由:,四边形ADCE是平行四边形,AD,CD分别平分和,四边形ADCE是菱形故答案为:.【点睛】本题考查菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型15【分析】根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值【详解】解:由函数图像可知:时,点P在AB上,点P在BC上,时,点P在CD上,解得解析:【分析】根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值【详解】解:

19、由函数图像可知:时,点P在AB上,点P在BC上,时,点P在CD上,解得,又,即,故答案为:【点睛】本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解16【分析】先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出的值【详解】解:设CE=x,则AE=8-x,BDE是ADE翻折而成,A解析:【分析】先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出的值【详解】解:设CE=x,则AE=8-x,BDE是ADE翻折而成,AE=BE=8-x,在RtBCE中,BE2=BC2+CE2,即

20、(8-x)2=62+x2,解得x=,=,故答案为:【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键三、解答题17(1);(2)2【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解【详解】解:(1)() ;解析:(1);(2)2【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解【详解】解:(1)() ;(

21、2)6=2【点睛】本题考查了二次根式的运算,熟知二次根式的加减乘除运算法则,并正确计算是解题关键18(1)4米;(2)1米【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的解析:(1)4米;(2)1米【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离【详解】解:(1)根据勾股定理:墙的高度(米;(2)

22、梯子下滑了1米,即梯子距离地面的高度(米根据勾股定理:(米则(米,即底端将水平动1米答:(1)墙的高度是4米;(2)若梯子的顶端下滑1米,底端将水平动1米【点睛】本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长19(1);(2)画图见解析,3a2【解析】【分析】(1)利用割补法求值;(2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角边的斜边长,即,连解析:(1);(2)画图见解析,3a2【解析】【分析】(1)利用割补法求值;(2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角

23、边的斜边长,即,连接得到三角形求出面积即可【详解】解:(1),故答案为:;(2)如图, 【点睛】此题考查利用割补法求网格中图形的面积,网格中作图,正确掌握利用勾股定理求无理数长度的线段并画图是解题的关键20(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出B=ACB,根据平移得出ABDE,求出B=DEC,再求出ACB=DEC即可;(2)求出解析:(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出B=ACB,根据平移得出ABDE,求出B=DEC,再求出ACB=DEC即可;(2)求出四边形AECD是平行四边形,再求

24、出四边形AECD是矩形即可【详解】(1)证明:AB=AC,B=ACB,ABC平移得到DEF,ABDE,B=DEC,ACB=DEC,OE=OC,即OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:AB=AC,E为BC的中点,AEBC,BE=EC,ABC平移得到DEF,BEAD,BE=AD,ADEC,AD=EC,四边形AECD是平行四边形,AEBC,四边形AECD是矩形【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键21(1);(2),证明见解析【解析】【分析】(1)根据“第一个等式内数

25、字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1);(2),证明见解析【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n”,再利用开方即可证出结论成立【详解】(1)1+1=2;22;33;里面的数字分别为1、2、3, (2)观察,发现规律:1+1=2,223344, 证明:等式左边=n右边故n成立【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数

26、字为4;(2)找出变化规律“n”解决该题型题目时,根据数值的变化找出变化规律是关键22(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x值即可;(3)将x=17代入(1)中解析式中求得y值,再求得解析:(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x值即可;(3)将x=17代入(1)中解析式中求得y值,再求得当时,与之间的函数关系式,将x=15代入求解y值即可【详解】解:(1)设与之间的函数关系式为:, 由题意得:,与之间的函数关系式

27、为:(2)元元,由得:答:这户居民上月用水量25吨(3)当吨时,元,当时,与之间的函数关系式为:,当时,元,答:这户居民这个月的水费45元【点睛】本题考查一次函数的应用,理解题意,能从函数图象中获取有效信息,会利用待定系数法求解函数关系式是解答的关键23(1)证明见解析;(2);BH的长为17或7【分析】(1)证,即可得出结论;(2)连接,延长交于,设与的交点为,证,得,证为等腰直角三角形,即得结论;分两种情况,证出点、在一条解析:(1)证明见解析;(2);BH的长为17或7【分析】(1)证,即可得出结论;(2)连接,延长交于,设与的交点为,证,得,证为等腰直角三角形,即得结论;分两种情况,证

28、出点、在一条直线上,求出,则,由勾股定理求出,求出,即可得出答案【详解】(1)四边形ABCD和四边形AEFG是正方形,AD=AB=CB,AG=AE,DAB=GCE=90,DABGAF=GCEGAF,即DAG=BAE,在DAG和BAE中,DAGBAE(SAS),DG=BE;(2)连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:四边形BCHF是平行四边形,HFBC,HF=BC=ABBCAB,HFAB,HFG=FMB,又AGEF,GAB=FMB,HFG=GAB,在GAB和GFH中,GABGFH(SAS),GH=GB,GHF=GBA,HGB=HNB=90,GHB为等腰直角三角形,BH

29、BG,;分两种情况:a、如图3所示:连接AF、EG交于点O,连接BE四边形BCHF为菱形,CB=FBAB=CB,AB=FB=13,点B在AF的垂直平分线上四边形AEFG是正方形,AF=EG,OA=OF=OG=OE,AFEG,AE=FE=AG=FG,点G、点E都在AF的垂直平分线上,点B、E、G在一条直线上,BGAFAE=5,AF=EGAE=10,OA=OG=OE=5,OB12,BG=OB+OG=12+5=17,由得:BHBG=17;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B、E、G在一条直线上,OB=12,BG=OG+OBOG=125=7,由得:BHBG=7;综上所述:BH

30、的长为17或7【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键24(1)(-4,6);(2)y=x+3或y=-7x+3;(3)(,0)或(,0)【解析】【分析】(1)由及点不同于点,可知点是线段的中点,由点、的坐标即可求出点的坐标;(2)根据题意得到点C的解析:(1)(-4,6);(2)y=x+3或y=-7x+3;(3)(,0)或(,0)【解析】【分析】(1)由及点不同于点,可知点是线段的中点,由点、的坐标即可求出点的

31、坐标;(2)根据题意得到点C的两个位置,作线段AB的垂直平分线交AC于点G,交AC于点H,交AB于点Q,连接BG、BH,作GPy轴于点P,GFx轴于点F,证明GBFGAP,得到BF=AP,GF=GP,列方程求出AP,得到OP和OF,可得点G和H坐标,再利用待定系数法求解;(3)分平行四边形AMBN以AB为对角线,平行四边形ABNM以AB为一边,两种情况,画出图形分别求解【详解】解:(1)如图1,直线,当时,;当时,由,得,;,且点不同于点,点是线段的中点,即点与点关于点对称,点的横坐标为,当时,故答案为:(2)如图2,射线在直线的上方,射线在直线的下方,;作线段的垂直平分线交于点,交于点,交于

32、点,连接、,则;作轴于点,轴于点,则,四边形是正方形;,四边形是正方形,解得,;点与点关于点对称,;设直线的解析式为,则,解得,;设直线的解析式为,则,解得,综上所述,直线的解析式为或(3)存在,如图3,平行四边形以为对角线,延长交轴于点,设,由折叠得,;,且,解得,;,设直线的解析式为,则,解得,;点在轴上,且,轴,点与点的纵坐标相等,都等于3,当时,由,得,;如图4,平行四边形以为一边,则轴,且,综上所述,点的坐标为,或,【点睛】此题重点考查一次函数的图象和性质、用待定系数法求一次函数的解析式、平行四边形的判定、全等三角形的判定与性质、关于某点成中心对称的点的坐标等知识与方法,解题的关键是

33、正确地作出所需要的辅助线,第(2)题、第(3)题都要分类讨论,此题难度较大,属于考试压轴题25(1)4;(2)或8【分析】根据BABC,分别用勾股定理求出CO和AC的长.分情况AOOE和AOAE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.分情况i)当D在线解析:(1)4;(2)或8【分析】根据BABC,分别用勾股定理求出CO和AC的长.分情况AOOE和AOAE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.分情况i)当D在线段OB上时,如图3,过B作BGEF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质BDGBFG,得到BDBF,最后使用勾股定理求出结论

34、ii)当D在线段OB的延长线上时,如图4,过B作BGDE于G,同理计算可得结论.【详解】解:(1)AO4,BO6,AB10,BABC,BC10,COAB,AOCBOC90,由勾股定理得:CO8,AC4;(2)分两种情况:i)如图1,当AOOE4时,过O作ONAC于N,ANEN,DEAC,ONDE,AOOD4;ii)当AOAE4时,如图2,在CAO和DAE中,CAODAE(AAS),ADAC4,OD44;分两种情况:i)当D在线段OB上时,如图3,过B作BGEF于G,SOBF:SOCF1:4,CB10BFEFAC,BGAC,GBFACB,AEBG,ADBG,ABBC,AACB,DBGGBF,DG

35、BFGB,BDGBFG,BDBF,ODOBBD6,CD;ii)当D在线段OB的延长线上时,如图4,过B作BGDE于G,同理得,BC10,BF2,同理得:BFGBDF,BDBF2,RtCOD中,CD8,综上,CD的长为或8故答案为:或8【点睛】本题考查的是三角形全等的综合题,关键是根据三角形全等判定和性质、平行线性质、等腰三角形性质,三角形面积、勾股定理等,知识解答有难度.26(1)ABD=ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.【解析】【分析】(1)以AD为公共边,有ABD=ACD;(2)证明ADC是等腰直角三角形,得AD=CD,则解析:(1)ABD=ACD;(2)四边形A

36、CEF为正方形,理由见解析;(3)5.【解析】【分析】(1)以AD为公共边,有ABD=ACD;(2)证明ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;(3)如图2,作辅助线构建直角三角形,证明ABCCHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.【详解】解:(1)由图1得:ABD和ADC有公共边AD,在AD同侧有ABD和ACD,此时ABD=ACD;(2)四边形ACEF为正方形,理由是:ABC=90,BD平分ABC,ABD=CBD=45DAC=CBD=45四边形ACEF是菱形,AELCF,ADC=90,ADC是等腰直角三角形,AD=CD,.AE=CF,菱形ACEF是正方形;(3)如图2,过D作DGBC于G,过E作EHBC,交BC的延长线于H,DBG=45,BDG是等腰直角三角形,BD=4,BG=4,四边形ACEF是正方形,AC=CE,ACE=90,AD=DE,易得ABCCHE,CH=AB=3,AB/DG/EH,AD=DE,BG=GH=4,CG=4-3=1,BC=BG+CG=4+1=5.【点睛】本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服