资源描述
八年级下册数学期末试卷专题练习(解析版)
一、选择题
1.若二次根式有意义,则的值不可以是( )
A.3 B.2 C.1 D.0
2.已知a、b、c是三角形的三边长,如果满足(a﹣3)2+|c﹣5|=0,则三角形的形状是( )
A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形
3.下列图形都是由同样大小的平行四边形按一定的规律组成,其中第①个图形中一共有10个平行四边形,第②个图形中一共有14个平行四边形,第③个图形中一共有19个平行四边形,……按此规律排列下去,则第⑥个图形中平行四边形的个数为( )
A.39 B.40 C.41 D.42
4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数
方差
要从中选择一名发挥稳定的运动员去参加比赛,应该选择( )A.甲 B.乙
C.丙 D.丁
5.如图,的对角线、交于点,顺次连接各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是( )
A.1个 B.2个 C.3个 D.4个
6.如图,在菱形ABCD中,∠D=140°,则∠1的大小为( )
A.15° B.20° C.25° D.30°
7.如图,边长为的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )
A.0 B. C.1 D.
8.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:①;②;③.其中正确的是( )
A.②③ B.①②③ C.①② D.①③
二、填空题
9.计算:______.
10.如图,菱形中,为对角线,,,点为边上一点,则阴影部分的面积为______.
11.直角三角形的直角边长分别为,,斜边长为,则__________.
12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;
13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.
x/h
0
1
2
3
4
5
y/m
3
3.2
3.4
3.6
3.8
4
根据表格中水位的变化规律,则y与x的函数表达式为____.
14.如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点,点在上运动,点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,则点的坐标为__________.
15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________.
16.如图,将长方形纸片对折后再展开,形成两个小长方形,并得到折痕,是上一点,沿着再次折叠纸片,使得点恰好落在折痕上的点处,连接,.设,,,用含的式子表示的面积是______.
三、解答题
17.计算题:
(1)()×;
(2)|1﹣|+(π﹣2021)0﹣×.
18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.
19.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知、、都是格点.
(1)小明发现图2中是直角,请在图1补全他的思路;
(2)请借助图3用一种不同于小明的方法说明是直角.
20.如图,在平行四边形ABCD中,∠ABC的平分线BE交AD于点E,点F是BC边上的一点,且BF=AB,连接EF.
(1)求证:四边形ABFE是菱形;
(2)连接AF,交BE于点O,若AB=5,BE+AF=14,求菱形ABFE的面积.
21.观察下列各式:
化简以上各式,并计算出结果;
以上式子与其结果存在一定的规律.请按规律写出第个式子及结果.
猜想第个式子及结果(用含(的整数)的式子写出),并对猜想进行证明.
22.某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数关系式;
(2)当每千克干果降价3元时,超市获利多少元?
23.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.
(1)如图,当BE=CE时,求旋转角的度数;
(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;
(3)联结AF,求证:.
24.如图1,已知一次函数的图象分别交y轴正半轴于点A,x轴正半轴于点B,且的面积是24,P是线段上一动点.
(1)求k值;
(2)如图1,将沿翻折得到,当点正好落在直线上时,
①求点的坐标;
②将直线绕点P顺时针旋转得到直线,求直线的表达式;
(3)如图2,上题②中的直线与线段相交于点M,将沿着射线向上平移,平移后对应的三角形为,当是以为直角边的直角三角形时,请直接写出点的坐标.
25.(解决问题)如图1,在中,,于点.点是边上任意一点,过点作,,垂足分别为点,点.
(1)若,,则的面积是______,______.
(2)猜想线段,,的数量关系,并说明理由.
(3)(变式探究)如图2,在中,若,点是内任意一点,且,,,垂足分别为点,点,点,求的值.
(4)(拓展延伸)如图3,将长方形沿折叠,使点落在点上,点落在点处,点为折痕上的任意一点,过点作,,垂足分别为点,点.若,,直接写出的值.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据二次根式有意义的条件可得,再解即可.
【详解】
解:由题意得:,
解得:,
四个选项中,只有A选项不符合题意,
故选A.
【点睛】
本题考查了二次根式有意义的条件,解题关键在于掌握其定义.
2.B
解析:B
【分析】
根据二次根式和绝对值的非负性,可得 ,然后再由勾股定理的逆定理,即可求解.
【详解】
解:∵(a﹣3)2+|c﹣5|=0,
∴ ,
解得: ,
∵ ,
∴该三角形的形状是直角三角形.
故选:B
【点睛】
本题主要考查了勾股定理的逆定理,平方、算术平方根、绝对值的非负性,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则该三角形为直角三角形是解题的关键.
3.B
解析:B
【解析】
【分析】
观察图形的变化可得10+4=14,14+5=19,19+6=25,25+7=32,32+8=40,即可得结果.
【详解】
解:观察图形的变化可知:
第①个图形中一共有10个平行四边形,
第②个图形中一共有14个平行四边形,
第③个图形中一共有19个平行四边形,
第④个图形中一共有25个平行四边形,
第⑤个图形中一共有32个平行四边形,
则第⑥个图形中平行四边形的个数为40.
故选:B.
【点睛】
本题考查的是平行四边形的认识,规律型:图形的变化类,本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.
4.B
解析:B
【解析】
【分析】
首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.
【详解】
解:因为<<<,
所以乙最近几次选拔赛成绩的方差最小,
所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.
故选:B.
【点睛】
此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.C
解析:C
【分析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【详解】
解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①新的四边形成为矩形,符合条件;
②四边形是平行四边形,.
.
根据等腰三角形的性质可知.所以新的四边形成为矩形,符合条件;
③四边形是平行四边形,.
.
.
四边形是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④,
,即平行四边形的对角线互相垂直,
新四边形是矩形.符合条件.所以①②④符合条件.
故选:.
【点睛】
本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键.
6.B
解析:B
【解析】
【分析】
由菱形的性质得到DA=DC,∠DAC=∠1,由等腰三角形的性质得到∠DAC=∠DCA=∠1,根据三角形的内角和定理求出∠DAC,即可得到∠1.
【详解】
解:∵四边形ABCD是菱形,
∴DA=DC,∠DAC=∠1,
∴∠DAC=∠DCA=∠1,
在△ABD中,
∵∠D=140°,∠D+∠DAC+∠DCA=180°,
∴∠DAC=∠DCA=(180°﹣∠D)=×(180°﹣140°)=20°,
故选B.
【点睛】
本题主要考查了菱形的性质,角平分线的性质,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.
7.D
解析:D
【解析】
【分析】
设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可.
【详解】
解:设正八边形的边长为x,
则剪掉的等腰直角三角形的直角边为x,
∵正方形的边长为2+,
∴x+x+x=2+,
解得x==,
∴正八边形的边长为,
故选:D.
【点睛】
本题考查了正方形的性质,等腰直角三角形的性质,读懂题目信息,根据正方形的边长列出方程是解题的关键.
8.B
解析:B
【分析】
易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s跑完总路程400可得乙的速度,进而求得80s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c的值.
【详解】
由函数图象可知,
甲的速度为(米/秒),乙的速度为(米/秒),
(秒),,故①正确;
(米)故②正确;
(秒)故③正确;
正确的是①②③.故选B.
【点睛】
本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键.
二、填空题
9.##
【解析】
【分析】
由题可得,,即可得出,再根据二次根式的性质化简即可.
【详解】
解:由题可得,,
∴,
∴,
∴
.
故答案为:.
【点睛】
本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.
10.A
解析:
【解析】
【分析】
取对角线的交点为,根据菱形的性质及三角形面积的计算公式可知阴影部分的面积为面积的两倍.
【详解】
解:取对角线的交点为,过点作的垂线,交分别于点,如图所示:
根据菱形的性质及三角形面积的计算知,
阴影部分的面积为,∠AOB=90°,
,
,
,
,
即,
故阴影部分的面积为,
故答案是:.
【点睛】
本题考查了菱形的性质、勾股定理、三角形面积求法,解题的关键是:利用转换的思想来解答.
11.289
【解析】
【分析】
根据勾股定理计算即可.
【详解】
根据勾股定理得:斜边的平方=x2=82+152=289.
故答案为:289.
【点睛】
本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.
12.A
解析:
【分析】
作PM⊥AD于M,交BC于N,根据矩形的性质可得S△PEB=S△PFD即可求解.
【详解】
解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
,
∴,
,
∴S阴=9+9=18,
故答案为:18.
【点睛】
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明.
13.y=0.2x+3
【分析】
根据记录表由待定系数法就可以求出y与x的函数表达式.
【详解】
解:根据表格信息可知,每小时水位上升0.2m,y是x的的一次函数,
设y与x的函数表达式为y=kx+b,把(0,3)和(1,3.2)代入得:
,
解得:.
故y与x的函数表达式为y=0.2x+3.
故答案为:y=0.2x+3.
【点睛】
考查了待定系数法求一次函数解析式,在解答时确定两个变量是一次函数函数关系是解题关键.
14.D
解析:或或
【分析】
因为点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而△ODP是腰长为5的等腰三角形有三种情况,要分类讨论求解即可.
【详解】
解:由题意,若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而当△ODP是腰长为5的等腰三角形时,有三种情况:
(1)如答图①所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=5-3=2,
∴此时点P坐标为(2,4);
(2)如答图②所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE=,
∴此时点P坐标为(3,4);
(3)如答图③所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE=
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);
故答案为:(2,4)或(3,4)或(8,4);
【点睛】
本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.
15.【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得
解析:
【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得,
又∵,即
∴,
故答案为:.
【点睛】
本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.
16..
【分析】
由翻折可知, AM=NC,根据勾股定理求出NC,再求出MB′,用三角形面积公式求面积即可.
【详解】
解:∵∠C=90°,
∴NC=,
由翻折可知, AM= NC=,AB′=AB=,
解析:.
【分析】
由翻折可知, AM=NC,根据勾股定理求出NC,再求出MB′,用三角形面积公式求面积即可.
【详解】
解:∵∠C=90°,
∴NC=,
由翻折可知, AM= NC=,AB′=AB=,
MB′=,
的面积为:,
故答案为:.
【点睛】
本题考查了轴对称变换的性质,勾股定理,解题关键是把握轴对称的性质,找到题目中相等的相等,根据勾股定理求出线段长.
三、解答题
17.(1)3;(2)0
【分析】
(1)首先化简二次根式,再计算减法,最后计算乘法;
(2)先去绝对值,计算零指数幂,化简二次根式,再算乘法,最后计算加减.
【详解】
解:(1)
=
=
=3;
(2)
解析:(1)3;(2)0
【分析】
(1)首先化简二次根式,再计算减法,最后计算乘法;
(2)先去绝对值,计算零指数幂,化简二次根式,再算乘法,最后计算加减.
【详解】
解:(1)
=
=
=3;
(2)
=
=
=0
【点睛】
此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.
18.4米
【分析】
根据勾股定理列出方程,解方程即可.
【详解】
解:设水池里水的深度是x尺,
由题意得,x2+52=(x+1)2,
解得:x=12,
米
答:水池里水的深度是4米.
【点睛】
本题考查
解析:4米
【分析】
根据勾股定理列出方程,解方程即可.
【详解】
解:设水池里水的深度是x尺,
由题意得,x2+52=(x+1)2,
解得:x=12,
米
答:水池里水的深度是4米.
【点睛】
本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.
19.(1)见解析;(2)见解析
【解析】
【分析】
(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;
(2)过A点作于,过作于,然后证明≌,得到,在证明即可得到答案.
【详解
解析:(1)见解析;(2)见解析
【解析】
【分析】
(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;
(2)过A点作于,过作于,然后证明≌,得到,在证明即可得到答案.
【详解】
解:(1)∵,
,,
∴,
∴是直角三角形,
∴.
(2)过A点作于,过作于,
由图可知:,,,
在和中,
,
∴≌(SAS),
∴,
在中,,
∴,
∴,
∵,,三点共线,
∴,
∴.
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)见解析;(2)24
【分析】
(1)证,则,,得四边形是平行四边形,再由,即可得出结论;
(2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可.
【详解】
(1)证明:四边形是平行
解析:(1)见解析;(2)24
【分析】
(1)证,则,,得四边形是平行四边形,再由,即可得出结论;
(2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可.
【详解】
(1)证明:四边形是平行四边形,
,
,
的平分线交于点,
,
,
,
,
,,
四边形是平行四边形,
又,
平行四边形是菱形;
(2)解:由(1)得:四边形是菱形,
,,,
,
,
在中,由勾股定理得:,
即,
解得:或,
当时,,则,;
当时,,则,;
菱形的面积.
【点睛】
本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.
21.;;第个式子为及结果为,证明见解析
【解析】
【分析】
(1)分别把每个式子的第二项进行分母有理化,观察结果;
(2)根据(1)的结果写出第5个式子及结果;
(3)根据(1)的规律可得,然后分母有理
解析:;;第个式子为及结果为,证明见解析
【解析】
【分析】
(1)分别把每个式子的第二项进行分母有理化,观察结果;
(2)根据(1)的结果写出第5个式子及结果;
(3)根据(1)的规律可得,然后分母有理化,求出结果即可.
【详解】
解:
第个式子为及结果为
证明:左边
右边
成立
【点睛】
本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.
22.(1)y=10x+100(0<x<20);(2)当每千克干果降价3元时,超市获利2210元
【分析】
(1)由待定系数法即可得到函数的解析式;
(2)根据(1)的解析式将x=3代入求出销售量,再根据
解析:(1)y=10x+100(0<x<20);(2)当每千克干果降价3元时,超市获利2210元
【分析】
(1)由待定系数法即可得到函数的解析式;
(2)根据(1)的解析式将x=3代入求出销售量,再根据每千克利润×销售量=总利润列式求解即可.
【详解】
解:(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100(0<x<20);
(2)根据题意得,销售量y=10×3+100=130,
(60-3-40)×130=2210(元),
答:当每千克干果降价3元时,超市获利2210元.
【点睛】
本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识.
23.(1)30°;(2)不变;45°;(3)见解析
【分析】
(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.
(2)因为△CED是等腰三角形,再利用三角形的内角
解析:(1)30°;(2)不变;45°;(3)见解析
【分析】
(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.
(2)因为△CED是等腰三角形,再利用三角形的内角和即可求∠BEF=.
(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得△ABG≌△ADH.从而求得矩形AGFH是正方形,根据正方形的性质证得△AHD≌△DIC,从而得出结论.
【详解】
(1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD,
又∵BE=CE,
∴BE=CE=BC,
∴△BEC是等边三角形,
∴∠BCE=60°.
又∵∠BCD=90°,
∴=∠DCE=30°.
(2)∠BEF的度数不发生变化.
在△CED中,CE=CD,
∴∠CED=∠CDE=,
在△CEB中,CE=CB,∠BCE=,
∴∠CEB=∠CBE=,
∴∠BEF=.
(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I
易知四边形AGFH是平行四边形,
又∵BF⊥DF,
∴平行四边形AGFH是矩形.
∵∠BAD=∠BGF=90°,
∠BPF=∠APD ,
∴∠ABG=∠ADH.
又∵∠AGB=∠AHD=90°,AB=AD,
∴△ABG≌△ADH.
∴AG=AH ,
∴矩形AGFH是正方形.
∴∠AFH=∠FAH=45°,
∴AH=AF
∵∠DAH+∠ADH=∠CDI+∠ADH=90°
∴∠DAH=∠CDI
又∵∠AHD=∠DIC=90°,AD=DC,
∴△AHD≌△DIC
∴AH=DI,
∵DE=2DI,
∴DE=2AH=AF
【点晴】
本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24.(1);(2)①点(3,0),②,(3)点的坐标(7,12)或(4,3).
【解析】
【分析】
(1)根据函数解析式可知OA长,再由即可求出OB长,将B点坐标代入解析式即可求出k值;
(2)①由折叠
解析:(1);(2)①点(3,0),②,(3)点的坐标(7,12)或(4,3).
【解析】
【分析】
(1)根据函数解析式可知OA长,再由即可求出OB长,将B点坐标代入解析式即可求出k值;
(2)①由折叠性质可求得中、,用勾股定理列方程即可求解;②通过构造等腰直角三角形,利用K字形模型全等求出直线上点Q坐标,再由A、Q点坐标用待定系数法求出解析式即可,
(3)根据平移性质可知,先求出直线的解析式;再当是以为直角边的直角三角形时,分两种情况求出直线与过A、P点垂直于AP直线的解析式,联立函数解析式得方程求出点坐标,由此得出图形平移方式,由此求出点的坐标.
【详解】
解:(1)当x=0时,y=6,故点A坐标为A(0,6),
∵,
∴,
∴点B坐标为(8,0),
代入得,
∴,
(2)①如图2-1,由折叠性质可知:,;,
∵,
∴,
设,则,
由得,
∴,
即P点坐标为(3,0)
②如图,过点A作AQ⊥AP,并在AQ上取点Q使AQ=AP,过Q点作HQ⊥y轴,
∴,
∵,
∴,
∴(AAS)
∴HQ=AO=6,AH=OP=3,
∴点Q坐标为(6,9),
∵△APQ是等腰直角三角形,
∴将直线绕点P顺时针旋转得到直线,直线与PQ重合,
设经过P(3,0),Q(6,9)的直线解析式为得
,
解得:,
即直线为,
(3)由平移性质可知:,由(2)得直线为,
∴设直线解析式为,
当x=8时,y=0,即,解得:,
∴直线解析式为,
由(2)得A(0,6)、Q(6,9),则直线AQ解析式为:,
I.当AP为直角边,时,如图3-1
联立直线和直线AQ得:
,
解得:,
即坐标(12,12),故点B(8,0)向右移动4个单位,向上移动12个单位得到点,
∴故点P(3,0)向右移动4个单位,向上移动12个单位得到点(7,12),
即当AP为直角边,时,点(7,12),
II.当AP为直角边,时,如图3-2,
∴,
设直线解析式为:,
∵P点坐标为(3,0),
∴,
∴
∴直线解析式为,
联立直线和直线得:
,
解得:,
即坐标(9,3),故点B(8,0)向右移动1个单位,向上移动3个单位得到点,
∴故点P(3,0)向右移动1个单位,向上移动3个单位得到点(4,3),,
即当AP为直角边,时,点(4,3).
【点睛】
本题综合考查了一次函数与几何综合,待定系数法求解析式是基础,解(2)关键是利用等腰直角三角形构建三垂直全等从而求出旋转45°直线的解析式;解(3)关键是利用平行直线的性质求出解析式.
25.(1)15,8;(2),见解析;(3);(4)4
【分析】
解决问题(1)只需运用面积法:,即可解决问题;
(2)解法同(1);
(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的
解析:(1)15,8;(2),见解析;(3);(4)4
【分析】
解决问题(1)只需运用面积法:,即可解决问题;
(2)解法同(1);
(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的面积,由的面积的面积的面积的面积,即可得出答案;
(4)过点作,垂足为,易证,过点作,垂足为,由解决问题(1)可得,易证,,只需求出即可.
【详解】
解:(1)∵,,,
∴的面积,
∵,,,
且,
∴,
∵,
∴.
故答案为:15,8.
(2)∵,,,
且,
∴,
∵,
∴.
(3)连接、、,作于,如图2所示:
∵,
∴是等边三角形,
∵,
∴,
∴,
∴的面积,
∵,,,
∴的面积的面积的面积的面积
,
∴.
(4)过点作,垂足为,如图3所示:
∵四边形是矩形,
∴,,
∵,,
∴,
由折叠可得:,,
∵,
∴,
∵,,
∴,
∴四边形是矩形,
∴,
∵,
∴,
∵,
∴,
∴,
由解决问题(1)可得:,
∴,即的值为4.
【点睛】
本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.
展开阅读全文