资源描述
人教版中学七年级下册数学期末质量检测(附答案)
一、选择题
1.如图,直线,b被直线c所截,下列说法正确的是( )
A.∠2与∠3是同旁内角 B.∠1与∠4是同位角
C.与是同旁内角 D.∠1与∠2是内错角
2.在以下现象中,属于平移的是( )
①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.
A.①② B.②④ C.②③ D.③④
3.下列各点中,位于第三象限的是( )
A. B. C. D.
4.下列命题中假命题的是( )
A.同旁内角互补,两直线平行
B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
C.在同一平面内,过一点有且只有一条直线与已知直线垂直
D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直
5.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
6.若,则的值是( )
A.1 B.-3 C.1或-3 D.-1或3
7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( )
A.45° B.125°
C.55° D.35°
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2021的坐标为( )
A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4)
九、填空题
9.已知+|3x+2y﹣15|=0,则=_____.
十、填空题
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
十一、填空题
11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.如图所示是一张长方形形状的纸条,,则的度数为__________.
十四、填空题
14.若,且a,b是两个连续的整数,则a+b的值为_______
十五、填空题
15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若大于0,不小于0,则点在第三象限;③过一点有且只有一条直线与已知直线平行;④若,则的算术平方根是.其中,是真命题的有______.(写出所有真命题的序号)
十六、填空题
16.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为_______.
十七、解答题
17.计算.
(1);
(2).
十八、解答题
18.求满足下列各式的未知数.
(1).
(2).
十九、解答题
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
二十、解答题
20.如图,在平面直角坐标系中,,,.中任意一点经平移后对应点为,将作同样的平移得到.
(1)请画出并写出点,,的坐标;
(2)求的面积;
(3)若点在轴上,且的面积是1,请直接写出点的坐标.
二十一、解答题
21.任意无理数都是由整数部分和小数部分构成的.
已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为.例如:,即,显然的整数部分是2,小数部分是.
根据上面的材料,解决下列问题:
(1)若的整数部分是m,的整数部分是n,求的值.
(2)若的整数部分是,小数部分是y,求的值.
二十二、解答题
22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
二十三、解答题
23.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可.
【详解】
解:A.∠2与∠3是同旁内角,故说法正确,符合题意;
B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意;
C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意;
D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意;
故选:A.
【点睛】
本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.
2.B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
解析:B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
①在荡秋千的小朋友的运动,不是平移;
②坐观光电梯上升的过程,是平移;
③钟面上秒针的运动,不是平移;
④生产过程中传送带上的电视机的移动过程.是平移;
故选:B.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.
3.C
【分析】
根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数.
【详解】
位于第三象限的点的横坐标和纵坐标都是负数,
C符合题意,
故选C.
【点睛】
本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
4.D
【分析】
根据平行线的判定定理逐项分析即可判断.
【详解】
A. 同旁内角互补,两直线平行,是真命题,不符合题意;
B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意;
C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意;
D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意;
故选D
【点睛】
本题考查了真假命题的判断,掌握相关定理与性质是解题的关键.
5.B
【分析】
根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.
【详解】
解:如图,
∵BC平分∠ACD,CF平分∠ACG,
∴
∵∠ACG+∠ACD=180°,
∴∠ACF+∠ACB=90°,
∴CB⊥CF,故①正确,
∵CD∥AB,∠BAC=50°,
∴∠ACG=50°,
∴∠ACF=∠4=25°,
∴∠ACB=90°-25°=65°,
∴∠BCD=65°,
∵CD∥AB,
∴∠2=∠BCD=65°,
∵∠1=∠2,
∴∠1=65°,故②正确;
∵∠BCD=65°,
∴∠ACB=65°,
∵∠1=∠2=65°,
∴∠3=50°,
∴∠ACE=15°,
∴③∠ACE=2∠4错误;
∵∠4=25°,∠3=50°,
∴∠3=2∠4,故④正确,
故选:B.
【点睛】
此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.
6.C
【分析】
根据题意,利用平方根,立方根的定义求出a,b的值,再代入求解即可.
【详解】
解:
,
当时,;
∴当时,.
故选:C.
【点睛】
本题考查的知识点是平方根以及立方根的定义,根据定义求出a,b的值是解此题的关键.
7.C
【分析】
根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案.
【详解】
解:∵∠ACB=90°,∠2=35°,
∴∠3=180°-90°-35°=55°,
∵a∥b,
∴∠1=∠3=55°.
故选:C.
【点睛】
本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中.
8.C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴
解析:C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505•••1,
∴点A2021的坐标与A1的坐标相同,为(3,1).
故选:C.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
九、填空题
9.3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛
解析:3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛】
考查了非负数的性质,正确得出x,y的值是解题关键.
十、填空题
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
十一、填空题
11.120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=
解析:120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.
【详解】
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=60°,
∴∠BOC=180°-∠OBC-∠OCB=120°
故答案为120°
【点睛】
本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=
解析:5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=180°-105°=75°,
∴∠2=(180°-75°)÷2=52.5°,
故答案为:52.5°.
【点睛】
此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.
十四、填空题
14.13
【解析】
分析:先估算出的范围,求出a、b的值,再代入求出即可.
详解:∵6<<7,∴a=6,b=7,∴a+b=13.
故答案为13.
点睛:本题考查了估算无理数的大小,能估算出的范围是解答此
解析:13
【解析】
分析:先估算出的范围,求出a、b的值,再代入求出即可.
详解:∵6<<7,∴a=6,b=7,∴a+b=13.
故答案为13.
点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键.
十五、填空题
15.①④
【分析】
根据平面直角坐标系,平行线,算术平方根的概念进行判断
【详解】
解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;
②若大于0,不小于0,则>0,≥0,点在第三象限
解析:①④
【分析】
根据平面直角坐标系,平行线,算术平方根的概念进行判断
【详解】
解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;
②若大于0,不小于0,则>0,≥0,点在第三象限或x轴的负半轴上;故此命题是假命题;
③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;
④若,则x=1,y=4,则的算术平方根是,正确,故此命题是真命题.
故答案为:①④
【点睛】
此题主要考查了命题与定理,正确掌握相关定义是解题关键.
十六、填空题
16.(0,-2)
【分析】
根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根
解析:(0,-2)
【分析】
根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题.
【详解】
解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,
∴A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数).
∵2020=4×504+4,
∴点A2020的坐标为(0,-2).
故答案为:(0,-2).
【点睛】
本题考查了规律型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”.
十七、解答题
17.(1)3;(2)
【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查有理数
解析:(1)3;(2)
【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
解析:(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
【点睛】
本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.
十九、解答题
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
二十、解答题
20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或
【分析】
(1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B
解析:(1)图见解析,,,;(2)3.5;(3)点的坐标为或
【分析】
(1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B1C1;
(2)利用割补法进行计算,即可得到△A1B1C1的面积;
(3)设P(0,y),依据△A1B1P的面积是1,即可得到y的值,进而得出点P的坐标.
【详解】
解:(1)如图所示,即为所求;,,;
(2)的面积为:;
(3)设,则,
∵的面积是1,
∴,
解得,
∴点的坐标为或.
【点睛】
本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是
解析:(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是3,即m=3,
∵,
∴,
∴的整数部分是2,即n=2,
∴==0;
(2)∵,
∴,
∴的整数部分是10,即2x=10,
∴x=5,
∴的小数部分是=,
即y=,
∴==.
【点睛】
本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
二十三、解答题
23.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.
理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-(∠DHG+∠BGH)
=180°-(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-(180°+∠HAG)
=90°-∠HAG
=90°-(30°+∠FAO+45°)
=52.5°-∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.
展开阅读全文