收藏 分销(赏)

2023年人教版中学七7年级下册数学期末考试试卷含答案大全.doc

上传人:天**** 文档编号:1892027 上传时间:2024-05-11 格式:DOC 页数:23 大小:502.54KB
下载 相关 举报
2023年人教版中学七7年级下册数学期末考试试卷含答案大全.doc_第1页
第1页 / 共23页
2023年人教版中学七7年级下册数学期末考试试卷含答案大全.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述
2023年人教版中学七7年级下册数学期末考试试卷含答案大全 一、选择题 1.如图,的同位角是( ) A. B. C. D. 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.若点在第二象限,则点在第( )象限 A.一 B.二 C.三 D.四 4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.把一块直尺与一块含的直角三角板如图放置,若,则的度数为( ) A. B. C. D.124° 6.下列计算正确的是(  ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,一条“U”型水管中AB//CD,若∠B=75°,则∠C应该等于( ) A. B. C. D. 8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( ) A.(2020,0) B.(2021,-1) C.(2021,1) D.(2022,0) 九、填空题 9.已知=8,则x的值是________________. 十、填空题 10.若过点的直线与轴平行,则点关于轴的对称点的坐标是_________. 十一、填空题 11.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________. 十二、填空题 12.如下图,C岛在A岛的北偏东65°方向,在B岛的北偏西35°方向,则______度. 十三、填空题 13.如图1是长方形纸带,,将纸带沿折叠成图2,再沿折叠成图3,则图3中的的度数是_________度. 十四、填空题 14.请阅读下列材料,现在规定一种新的运算:,例如:.按照这种计算的规定,当,x的值为___. 十五、填空题 15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________. 十六、填空题 16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________. 十七、解答题 17.(1)已知,求x的值; (2)计算:. 十八、解答题 18.求满足下列各式x的值 (1)2x2﹣8=0; (2)(x﹣1)3=﹣4. 十九、解答题 19.如图,已知:,. 求证:. 证明:∵(已知), ∴∠______=∠______(______). ∵(______), ∴∠______(等量代换). ∴(______). 二十、解答题 20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 . (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 . (2)求 的面积. (3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 . 二十一、解答题 21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根. 二十二、解答题 22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二十三、解答题 23.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中,  (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 二十四、解答题 24.如图1,由线段组成的图形像英文字母,称为“形”. (1)如图1,形中,若,则______; (2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由; (3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系. 二十五、解答题 25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同位角的定义即可求出答案. 【详解】 解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即是的同位角. 故选:B. 【点睛】 本题考查同位角的定义,解题的关键是:熟练理解同位角的定义. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限. 【详解】 解:∵点在第二象限, ∴1+a<0,1-b>0; ∴a<-1, b-1<0, 即点在第三象限. 故选:C. 【点睛】 解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 4.C 【分析】 根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可. 【详解】 解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题; (2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题; (3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题; (4)1的平方根 ,故(4)是假命题; 所以假命题的个数有3个, 故选:C. 【点睛】 本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键. 5.D 【分析】 根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】 解:由题意可知AD//BC,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC, ∴∠2=180°-∠AEF=124°, 故选:D. 【点睛】 本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.C 【分析】 直接根据平行线的性质即可得出结论. 【详解】 解:∵AB∥CD,∠B=75°, ∴∠C=180°-∠B=180°-75°=105°. 故选:C. 【点睛】 本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键. 8.C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标. 【详解】 解:半径为1个单位长度的半圆的周长为×2π×1=π, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长 解析:C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标. 【详解】 解:半径为1个单位长度的半圆的周长为×2π×1=π, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度, ∴点P每秒走个半圆, ∴当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0), …, ∵2021÷4=505余1, ∴P的坐标是(2021,1), 故选:C. 【点睛】 此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 九、填空题 9.65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键 解析:65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键. 十、填空题 10.【分析】 根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标.   【详解】 解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5) ∴点M关于y轴的对 解析: 【分析】 根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标.   【详解】 解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5) ∴点M关于y轴的对称点的坐标为:(3,-5) 故答案为(3,-5). 【点睛】 本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.     十一、填空题 11.5° 【分析】 根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解. 【详解】 ∵AD⊥BC,∠C=30°, ∴∠C 解析:5° 【分析】 根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解. 【详解】 ∵AD⊥BC,∠C=30°, ∴∠CAD=90°-30°=60°, ∵AE是△ABC的角平分线,∠BAC=130°, ∴∠CAE=∠BAC=×130°=65°, ∴∠DAE=∠CAE-∠CAD=65°-60°=5°. 故答案为:5°. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键. 十二、填空题 12.100 【分析】 根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解. 【详解】 如图,作CE∥AD,则CE∥BF. ∵CE∥AD,∴=65°. ∵CE∥BF,∴=35°. 解析:100 【分析】 根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解. 【详解】 如图,作CE∥AD,则CE∥BF. ∵CE∥AD,∴=65°. ∵CE∥BF,∴=35°. ∴=65°35°=100°. 故答案为:100. 【点睛】 本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等. 十三、填空题 13.123 【分析】 由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG. 【详解】 解:∵AD// 解析:123 【分析】 由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG. 【详解】 解:∵AD//BC, ∴∠DEF=∠EFB=19°, 在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°, 在图3中,∠CFE=∠GFC-∠EFG=123°. 故答案为:123. 【点睛】 本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 十四、填空题 14.【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤 解析: 【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 十五、填空题 15.【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直 解析: 【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直线BC的解析式为, 把,代入得: , 解得:, 故BC的解析式为, 当时,, 故与轴的交点坐标为; 故答案是. 【点睛】 本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键. 十六、填空题 16.(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A 解析:(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论. 【详解】 解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…, ∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数), ∵2021=505×4+1, ∴A2021(-506,-506), 故答案为:(-506,-506). 【点睛】 本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键. 十七、解答题 17.(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【 解析:(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【点睛】 本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 十八、解答题 18.(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【 解析:(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【点睛】 本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题 19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【分析】 首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C 解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【分析】 首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE. 【详解】 证明:∵AB∥CD, ∴∠B=∠C(两直线平行,内错角相等), ∵∠B+∠D=180°(已知), ∴∠C+∠D=180°(等量代换), ∴CB∥DE(同旁内角互补,两直线平行). 故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【点睛】 本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明. 二十、解答题 20.(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点 解析:(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 , 所以 ,求解即可. 【详解】 解:(1) 如图, 为所作. (0,3),(4,0); (2) 计算 的面积 . (3)设P点得坐标为(t,0), 因为以 ,, 为顶点得三角形得面积为 , 所以 ,解得 或 , 即 点坐标为 (3,0) 或(5,0). 【点睛】 本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析: 【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, ∴的整数部分是6,则小数部分是:, ∴, ∴的平方根为:. 【点睛】 本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用. 二十二、解答题 22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二十三、解答题 23.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD 解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 二十四、解答题 24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E, 解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可; 【详解】 解:(1)过M作MN∥AB, ∵AB∥CD, ∴AB∥MN∥CD, ∴∠1=∠A,∠2=∠C, ∴∠AMC=∠1+∠2=∠A+∠C=50°; 故答案为:50°; (2)∠A+∠C=30°+α, 延长BA,DC交于E, ∵∠B+∠D=150°, ∴∠E=30°, ∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α; 即∠A+∠C=30°+α; (3)①如下图所示: 延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F, ∵∠B+∠D=150°,∠AMC=α,∴∠E=30° 由三角形的内外角之间的关系得: ∠1=30°+∠2 ∠2=∠3+α ∴∠1=30°+∠3+α ∴∠1-∠3=30°+α 即:∠A-∠C=30°+α. ②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α. 综上所述,∠A-∠DCM=30°+α或30°-α. 【点睛】 本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数. 二十五、解答题 25.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服