收藏 分销(赏)

八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc

上传人:w****g 文档编号:1886215 上传时间:2024-05-11 格式:DOC 页数:29 大小:961.54KB
下载 相关 举报
八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc_第1页
第1页 / 共29页
八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc_第2页
第2页 / 共29页
八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc_第3页
第3页 / 共29页
八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc_第4页
第4页 / 共29页
八年级下册数学廊坊数学期末试卷测试与练习(word解析版).doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、八年级下册数学廊坊数学期末试卷测试与练习(word解析版)一、选择题1要使等式0成立的x的值为()A3B1C3或1D以上都不对2以下列各组线段为边作三角形,不能作出直角三角形的是( )A1,2,B6,8,10C3,7,8D0.3,0.4,0.53在四边形中,若四边形是平行四边形,则还需要满足( )ABCD4甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲25,S乙220,S丙223,S丁232,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁5如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2

2、)随时间x(s)变化的关系图象,则a的值为()ABCD26如图,点在的边上,把沿折叠,点恰好落在直线上,则线段是的( )A中线B角平分线C高线D垂直平分线7如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)8在平面直角坐标系中,已知直线yx+3与x轴、y轴分别交于A、B两点,点C在线段OB上,把ABC沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是()A(0,)B(0,)C(0,

3、3)D(0,4)二、填空题9使代数式有意义的x的取值范围是_10如图,菱形ABCD的周长为,对角线AC和BD相交于点O,ACBD=12,则AOBO=_,菱形ABCD的面积S=_11在平面直角坐标系中,若点到原点的距离是,则的值是_12如图,在ABC中,C90,D为AB的中点,AB6,则CD的长是_13一次函数y=kx+b,当-3x1时,对应的y的值为1y9,则k+b=_ .14如图,下列条件之一能使平行四边形ABCD是菱形的为_ACBD;BAD=90;AB=BC;AC=BD15已知直线与轴,轴分别交于点,点是射线上的动点,点在第一象限,四边形是平行四边形若点关于直线的对称点恰好落在轴上,则点的

4、坐标为_ 16如图,在RtABC中,ACB=90,AC=6,BC=8,将边AC A沿CE翻折,使点A落在AB上的点D处;再将边 BC沿CF翻折,使点B落在CD的延长线上的点B处,两条折痕与斜边AB分别交于点 E、F,则BFC 的面积为_三、解答题17计算(1)(2)18如图,一架长2.5m的梯子AB斜靠在墙AC上,C90,此时,梯子的底端B离墙底C的距离BC为0.7m(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的底端B在水平方向上向右滑动了多远?19如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的,

5、请你根据所学的知识回答下列问题:(1)判断的形状,并说明理由:(2)求的面积20如图,已知点是中边的中点,连接并延长交的延长线于点,连接,(1)求证:四边形为矩形;(2)若是等边三角形,且边长为6,求四边形的面积21阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:方法二:(1)请用两种不同的方法化简:;(2)化简:22学校的学生专用智能饮水机在工作过程:先进水加满,再加热至100时自动停止加热,进入冷却期,水温降至25时自动加热,水温升至100又自动停止加热,进入冷却期,此为一个循环加热周期,在不重新加入水的情况下,一直如此循环工作,如图,表

6、示从加热阶段的某一时刻开始计时,时间为(分)与对应的水温为()函数图象关系,已知段为线段,段为双曲线一部分,点为,点为,点为(1)求出段加热过程的与的函数关系式和的值(2)若水温()在时为不适饮水温度,在内,在不重新加入水的情况下,不适饮水温度的持续时间为多少分?23共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF连结BH,BG,求的值;当四边形BCHF为菱形时,直接写出BH的长24在平面直角坐标系xOy中,对于任意三点A,B,C的“矩积”,给出如下定义:“横底”a:任意两点横坐标差

7、的最大值;“纵高”h:任意两点纵坐标差的最大值;则“矩积”Sah例如:三点坐标分别为A(1,2),B(2,2),C(1,3),则“横底”a3,“纵高”h5,“矩积”Sah15已知点D(2,3),E(1,1)(1)若点F在x轴上当D,E,F三点的“矩积”为24,则点F的坐标为 ;直接写出D,E,F三点的“矩积”的最小值为 ;(2)若点F在直线ymx+4上,使得D,E,F三点的“矩积”取到最小值,直接写出m的取值范围是 25如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4)(1

8、)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由【参考答案】一、选择题1A解析:A【分析】根据二次根式有意义的条件求解即可【详解】且解得或或(舍)故选A【点睛】本题考查了二次根式有意义的条件,以及与0相乘的数等于0,掌握二次根式有意义的条件是解题的关键2C解析:C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可【详解】解:A、,以1,2,为边的三角形是直角三角形,故本选项不符合题意;B、62+82=36+64=100=102,以6,8,10为边的三角形是

9、直角三角形,故本选项不符合题意;C、32+72=9+49=5882,以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D、0.32+0.42=0.09+0,16=0.25=0.52,以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形3C解析:C【解析】【分析】根据四边形已经具备一组对边平行,确定再加上另一组对边平行即可【详解】解:在四边形中,四边形是平行四边形,故选:C【点睛

10、】本题考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理,难度不大4A解析:A【解析】【分析】根据方差的意义求解即可【详解】解:S甲2=5,S乙2=20,S丙2=23,S丁2=32,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好5B解析:B【分析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】解:过点D作DEBC

11、于点E,由图象可知,点F由点A到点D用时为as,FBC的面积为acm2AD=a,BCDE=ADDE=aDE=a,DE=2,当点F从D到B时,用s,BD=cm,RtDBE中,BE=,ABCD是菱形,EC=a-,DC=a,RtDEC中,a2=22+(a-)2,解得a=,故选:B【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系6B解析:B【解析】【分析】根据折叠前后对应角相等即可得出,从而得出结论【详解】解:根据折叠的性质可得,线段是的角平分线,故选:B【点睛】本题考查折叠的性质,角平分线的定义注意折叠前后对应角相等7D解析:D【解析】【分析】连接,

12、由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键8B解析:B【分析】设C(0,n),过C作CDAB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分OAB,得到CDCOn,DAOA4,则DB541,BC3n,在RtBCD中,利用勾股定理得到n的方程,解方程求出n即可【详解】解:设C(0,n),过C作CDAB于D,如图,

13、对于直线yx+3,当x0,得y3;当y0,x4,A(4,0),B(0,3),即OA4,OB3,AB5,又坐标平面沿直线AC折叠,使点B刚好落在x轴上,AC平分OAB,CDCOn,则BC3n,DAOA4,DB541,在RtBCD中,DC2+BD2BC2,n2+12(3n)2,解得n,点C的坐标为(0,)故选:B【点睛】本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y或x的值;也考查了折叠的性质和勾股定理二、填空题9x-3【解析】【分析】先根据分式分母不为零,再根据二次根式被开方数不为零得出不等式计算即可【详解】解:有题意可知: 则x+30x-3故答案为:x-3【点睛】本

14、题考查分式有意义的条件,二次根式有意义的条件是一道复合型的题目,要考虑前面是重点10A解析: 1:2 4【解析】【分析】根据菱形性质得出ACBD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,即可求出AO:BO,根据勾股定理得出方程,求出x的值,求出AC、BD,根据菱形面积公式求出即可【详解】解:四边形ABCD是菱形,ACBD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,AC:BD=1:2,AO:BO=AC:(BD)=AC:BD=1:2;设AO=x,则BO=2x,在RtAOB中,由勾股定理得:x2+(2x)2=()2,解得:x=1(负数舍去),

15、即AO=1,BO=2,AC=2,BD=4,菱形ABCD的面积是S=ACBD=24=4,故答案为:1:2,4【点睛】本题考查了菱形的性质的应用,主要考查学生运用性质进行推理和计算的能力,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半113或-3【解析】【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值【详解】解:点到原点的距离是,解得:x=3或-3,故答案为:3或-3.【点睛】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.12C解析:3【分析】利用直角三角形斜边上的中线等于斜边的一半即可得到答案.【详解】解:C90,D为AB的

16、中点,CDAB3故答案为:3【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.139或1【解析】【分析】本题分情况讨论:x=-3时对应y=1,x=1时对应y=9;x=-3时对应y=9,x=1时对应y=1;将每种情况的两组数代入即可得出答案【详解】当x=3时,y=1;当x=1时,y=9,则解得:所以k+b=9;当x=3时,y=9;当x=1时,y=1,则解得:所以k+b=1.故答案为9或1.【点睛】本题考查了待定系数法求一次函数解析式,解题的关键是熟练掌握待定系数法求一次函数解析式.14A解析:.【分析】根据菱形的判定定理判定即可.【详解

17、】解:ABCD中,ACBD,根据对角线互相垂直的平行四边形是菱形,即可判定ABCD是菱形,故正确;ABCD中,BAD=90,根据有一个角是直角的平行四边形是矩形,可判定ABCD是矩形,而不能判定ABCD是菱形,故错误;ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定ABCD是菱形,故正确;ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,可判定ABCD是矩形,而不能判定ABCD是菱形,故错误.故答案为.【点睛】本题主要考查了菱形的判定定理. 一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形.15或【分析】先根据题意求得,分

18、点在第二象限和第一象限两种情况讨论,根据点关于直线的对称点恰好落在轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明是等边三角形,在第二象限时候证明是解析:或【分析】先根据题意求得,分点在第二象限和第一象限两种情况讨论,根据点关于直线的对称点恰好落在轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明是等边三角形,在第二象限时候证明是等边三角形,利用等边三角形的性质,分别求得点的坐标【详解】与轴,轴分别交于点,令,令,如图,当点在第二象限时,设交轴于点,交于点,交轴于点,四边形是平行四边形,点关于直线的对称点为点,是等边三角形,点为的中点,如图,当点在第二象限时,延长交轴于点

19、,则,点关于直线的对称点为点,是等边三角形,综合可知C的坐标为或故答案为: 或【点睛】本题考查了一次函数图像的性质,平行四边形的性质,等边三角形的性质,含30度角的直角三角形的性质,勾股定理,轴对称的性质,此题方法比较多,利用等边三角形的性质是解题的关键16【分析】由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求ECF=45,可得EC=EF=4.8,即可求BF的长,可求面积【详解】解:RtABC解析:【分析】由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求ECF=45,可得EC=EF=4.8,即可求BF的长,可求面

20、积【详解】解:RtABC中,ACB=90,AC=6,BC=8,BA= =10,将边AC沿CE翻折,使点A落在AB上的点D处,AEC=CED,ACE=DCE,AED=180,CED=90,即CEAB,SABC= ABEC=ACBC,EC=4.8,在RtBCE中,BE=6.4,将边BC沿CF翻折,使点B落在CD的延长线上的点B处,BF=BF,BCF=BCF,BCF+BCF+ACE+DCE=ACB=90,ECF=45,又CEAB,EFC=ECF=45,CE=EF=4.8,BF=BE-EF=6.4-4.8=1.6,BFC的面积为:FBEC=,由翻折可知,BFC 的面积=BFC的面积=故答案为【点睛】本

21、题考查了折叠问题,勾股定理,根据折叠的性质求ECF=45是本题的关键三、解答题17(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);【点睛】解析:(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);【点睛】本题主要考查了二次根式的混合运算,结合平方差公式,零指数幂,绝对值的性质,完全平方公式计算是解题的关键18(1)2.4米;(2)1.3m【分析】(1)直

22、接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出BC,进而得出答案【详解】解:(1)C90,AB2.5,BC解析:(1)2.4米;(2)1.3m【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出BC,进而得出答案【详解】解:(1)C90,AB2.5,BC0.7,AC=(米),答:此时梯顶A距地面的高度AC是2.4米;(2)梯子的顶端A下滑了0.9米至点A,ACACAA2.40.91.5(m),在RtACB中,由勾股定理得:AC2BC2AB2,1.52BC22.52,BC2(m),BBCBBC20.71.3(m),答:梯子的底端B在水平方向滑

23、动了1.3m【点睛】此题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题关键19(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到,再根据勾股定理的逆定理即可求解;(2)用正方形的面积减去3个三角形的面积即可求解【详解】解:(1)是直解析:(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到,再根据勾股定理的逆定理即可求解;(2)用正方形的面积减去3个三角形的面积即可求解【详解】解:(1)是直角三角形,理由:正方形小方格边长为1,是直角三角形;(2)的面积,故的面积为5【点睛】本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及

24、勾股定理的逆定理20(1)见解析;(2)四边形的面积【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形的面积【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,再利用勾股定理求解,从而可得答案.【详解】(1)证明:四边形是平行四边形,点是中边的中点, ,四边形是平行四边形,又,平行四边形为矩形;(2)解:由(1)得:四边形为矩形,是等边三角形,四边形的面积【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四

25、边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+-),继而求得答案【详解】解:(1)解析:(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+-),继而求得答案【详解】解:(1)方法一:=-;方法二:=-;(2)原式=(-+-+-+)=()=-故答案为(1)-;(2)-【点睛】此题考查了分母有理化的知识此题难度较大,解题的关键是理解题意,

26、掌握分母有理化的两种方法22(1), ;(2)【分析】(1)设线段解析式为,双曲线的解析式为,然后把,代入,把代入求解即可;(2)把分别代入一次函数与反比例函数解析式求出对应的x的值,有次求解即可【详解】(1)设线解析:(1), ;(2)【分析】(1)设线段解析式为,双曲线的解析式为,然后把,代入,把代入求解即可;(2)把分别代入一次函数与反比例函数解析式求出对应的x的值,有次求解即可【详解】(1)设线段解析式为,双曲线的解析式为代入得, 解得线段AB的解析式,代入得,解得双曲线的解析式为解得;(2)反比例函数解析式为,当时,代入线段 ,解得,代入反比例函数得,解得x=20所以不适宜饮水的持续

27、时间为分【点睛】本题主要考查了一次函数与反比例函数的应用,解题的关键在于能够熟练掌握相关知识进行求解23(1)证明见解析;(2);BH的长为17或7【分析】(1)证,即可得出结论;(2)连接,延长交于,设与的交点为,证,得,证为等腰直角三角形,即得结论;分两种情况,证出点、在一条解析:(1)证明见解析;(2);BH的长为17或7【分析】(1)证,即可得出结论;(2)连接,延长交于,设与的交点为,证,得,证为等腰直角三角形,即得结论;分两种情况,证出点、在一条直线上,求出,则,由勾股定理求出,求出,即可得出答案【详解】(1)四边形ABCD和四边形AEFG是正方形,AD=AB=CB,AG=AE,D

28、AB=GCE=90,DABGAF=GCEGAF,即DAG=BAE,在DAG和BAE中,DAGBAE(SAS),DG=BE;(2)连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:四边形BCHF是平行四边形,HFBC,HF=BC=ABBCAB,HFAB,HFG=FMB,又AGEF,GAB=FMB,HFG=GAB,在GAB和GFH中,GABGFH(SAS),GH=GB,GHF=GBA,HGB=HNB=90,GHB为等腰直角三角形,BHBG,;分两种情况:a、如图3所示:连接AF、EG交于点O,连接BE四边形BCHF为菱形,CB=FBAB=CB,AB=FB=13,点B在AF的垂直平分

29、线上四边形AEFG是正方形,AF=EG,OA=OF=OG=OE,AFEG,AE=FE=AG=FG,点G、点E都在AF的垂直平分线上,点B、E、G在一条直线上,BGAFAE=5,AF=EGAE=10,OA=OG=OE=5,OB12,BG=OB+OG=12+5=17,由得:BHBG=17;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B、E、G在一条直线上,OB=12,BG=OG+OBOG=125=7,由得:BHBG=7;综上所述:BH的长为17或7【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分

30、线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键24(1)(5,0)或(4,0);12;(2)或【解析】【分析】(1)已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a-2时、当-2解析:(1)(5,0)或(4,0);12;(2)或【解析】【分析】(1)已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a-2时、当-2a1时、当a1时;将F点的横坐标仍按照三类情况进行讨论,根据“矩积”的定义可求解;(2)使直线过点D(-2,3)或点H(1,3),求出该特殊

31、位置时m的值,即可求解【详解】解:(1)设点F坐标为(a,0),D,E,F三点的“矩积”为24,“纵高”4,“横底”6,当a-2时,则“横底”=1-a6,a-5;当-2a1时,则“横底”=36,不合题意舍去;当a1时,则“横底”=a-(-2)6;a4,点F(5,0)或(4,0),故答案为:(5,0)或(4,0);当a-2时,则1-a3,S4(1-a)12,当2a1时,S3412,当a1时,则a-(-2)3,S4a-(-2)12,D,E,F三点的“矩积”的最小值为12,故答案为:12;(2)由(1)可知:设点F(a,0),当2a1时,D,E,F三点的“矩积”能取到最小值,如图下图所示,直线y=m

32、x+4恒过点(0,4),使该直线过点D(-2,3)或点H(1,3),当F在点D或点H时,D,E,F三点的“矩积”的最小值为12,当直线ymx+4过点D(-2,3)时,3-2m+4,解得:,当直线ymx+4过点H(1,3)时,3m+4,m-1,当m或m-1时,D,E,F三点的“矩积”能取到最小值【点睛】本题主要考察了一次函数的几何应用,提出了“矩积”这个全新的概念,解题的关键在于通过题目的描述,知道“矩积”的定义,同时要注意分类讨论25(1)G(0,4-);(2);(3).【解析】【分析】1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在RtAGF

33、中,利用勾股定理求出 ,那么解析:(1)G(0,4-);(2);(3).【解析】【分析】1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在RtAGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);(2)先在RtAGF中,由 ,得出AFG=60,再由折叠的性质得出GFE=BFE=60,解RtBFE,求出BE=BF tan60=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可

34、从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)F(1,4),B(3,4),AF=1,BF=2,由折叠的性质得:GF=BF=2,在RtAGF中,由勾股定理得,B(3,4),OA=4,OG=4-,G(0,4-);(2)在RtAGF中, ,AFG=60,由折叠的性质得知:GFE=BFE=60,在RtBFE中,BE=BFtan60=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,E(3,4-2),F(1,

35、4), 解得 ;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.GN1EF,直线EF的解析式为直线GN1的解析式为,当y=0时, .GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),M,( ,);FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.GFN2M2为平行四边形,GN与FM2互相平分.G(0,4-),N2点纵坐标为0GN:中点的纵坐标为 ,设GN

36、中点的坐标为(x,).GN2中点与FM2中点重合, x= .GN2的中点的坐标为(),.N2点的坐标为(,0).GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),M2();FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.GFN3M3为平行四边形,.GN3与FM3互相平分.G(0,4-),N2点横坐标为0,.GN3中点的横坐标为0,F与M3的横坐标互为相反数,M3的横坐标为-1,当x=-1时,y=,M3(-1,4+2);FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4G(0,4-),F(1,4),FG中点坐标为(),M4N4的中点与FG的中点重合,且N4的纵坐标为0,.M4的纵坐标为8-.5-45解方程 ,得 M4().综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。【点睛】本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服