资源描述
八年级下册数学烟台数学期末试卷测试与练习(word解析版)
一、选择题
1.式子在实数范围内有意义,则x的取值范围是( )
A. B. C. D.
2.已知的三边长分别为,,,由下列条件不能判断是直角三角形的是( )
A. B.
C. D.
3.在四边形中,对角线、相交于点,在下列条件中,①,,②,;③,,④,,⑤,能够判定四边形是平行四边形的个数有( )
A.2个 B.3个 C.4个 D.5个
4.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分的比例确定测试总分,已知小王三项得分分别为88,72,50,则小王的招聘得分为( )
A.71.2 B.70.5 C.70.2 D.69.5
5.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )
A.ABDC B.AC=BD C.AC⊥BD D.AB=DC
6.规定:菱形与正方形的接近程度叫做“接近度”,并用表示.设菱形的两个相邻内角分别为、,菱形的接近度定义为.则下列说法不正确的是( )
A.接近度越大的菱形越接近于正方形
B.有一个内角等于100°的菱形的接近度
C.接近度的取值范围是
D.当时,该菱形是正方形
7.如图所示,,则数轴上点表示的数为( )
A.3 B.5 C. D.
8.甲、乙两位同学住在同一小区,学校与小区相距2700米.一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象.则( )
A.乙骑自行车的速度是180米/分 B.乙到还车点时,甲,乙两人相距850米
C.自行车还车点距离学校300米 D.乙到学校时,甲距离学校200米
二、填空题
9.若代数式有意义,则实数的取值范围是_________.
10.已知菱形的边长为2,一个内角为,那么该菱形的面积为__________.
11.如图,一名滑雪运动员沿着坡比为的滑道,从A滑行至B,已知米,则这名滑雪运动员的高度下降了_______米.
12.如图,在矩形ABCD中,AB=8,AD=6,将矩形沿EF翻折,使点C与点A重合,点B落在B′处,折痕与DC,AB分别交于点E,F,则DE的长为______.
13.若直线y=kx+b(k≠0)经过点A(0,3),且与直线y=mx﹣m(m≠0)始终交于同一点(1,0),则k的值为________.
14.如图中,四边形 ABCD是对角线互相垂直的四边形,且 OB=OD,若使四边形 ABCD为菱形,则需添加的条件是______.(只需添加一个条件即可)
15.如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线、轴上的动点,当周长最小时,点的坐标为_____.
16.如图,平面直角坐标系中,A(4,4),B为y轴正半轴上一点,连接AB,在第一象限作AC=AB,∠BAC=90°,过点C作直线CD⊥x轴于D,直线CD与直线y=x交于点E,且ED=5EC,则直线BC解析式为_____.
三、解答题
17.计算:
(1)2﹣6×;
(2)(﹣2)2﹣(﹣2)(+2);
(3)(1+)•(2﹣);
(4).
18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?
19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图:
(1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点.
(2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点.
(3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等.
20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.
(1)求证:四边形CDBF是平行四边形.
(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.
21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a=,求的值.刘峰想了想,很快就算出来了,下面是他的解题过程:
解:∵,
又∵a=,
∴,
∴原式=.
你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.
22.某水果批发商以4元斤的价格对外销售芒果,为了减少库存,尽快回笼资金,推出两种批发方案
方案一:每斤打9.5折;
方案二:不超过200斤的部分按原价销售,超过200斤的部分打7.5折.
某超市计划从该水果批发商处购进x斤芒果,按方案一购买需支付费用元,按方案购买需支付费用元,则该超市选择哪种方案(只能选择一种方案)更合算,请说明理由.
23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称.
(1)求直线l2的函数表达式;
(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF.
①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE的长;
②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=3﹣上是否存在一点G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由.
24.如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴正半轴于,且面积为10.
(1)求点的坐标及直线的解析式;
(2)如图,设点为线段中点,点为轴上一动点,连接,以为边向右侧作正方形,在点的运动过程中,当顶点落在直线上时,求点的坐标;
(3)如图2,若为线段的中点,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.
【参考答案】
一、选择题
1.D
解析:D
【分析】
由二次根式的性质可以得到x-2≥0,由此即可求解.
【详解】
解:依题意得:x-2≥0,
∴x≥2.
故选D.
【点睛】
此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.
2.A
解析:A
【分析】
根据三角形的内角和定理求出∠A的度数,即可判断选项A;根据三角形内角和定理求出∠C的度数,即可判断选项B;根据勾股定理的逆定理判定选项C和选项D即可.
【详解】
设△ABC中,
∠A的对边是a,∠B的对边是b,∠C的对边是c,
A. ∠A = 2∠B = 3∠C,
∠A +∠B + ∠C= 180°,
,
解得: ,
△ABC不是直角三角形,故本选项符合题意;
B. ∠A = ∠C-∠B,
∠A +∠B = ∠C,
∠A+∠B + ∠C= 180°,
2∠C= 180°,
∠C= 90°,
△ABC是直角三角形,故本选项不符合题意;
C. ,
a- 5 = 0,b - 12 = 0, c - 13 = 0,
a = 5,b= 12,c= 13,
,
∠C= 90°,
△ABC是直角三角形,故本选项不符合题意;
D. ,
,
即,
∠B = 90°,
△ABC是直角三角形,故本选项不符合题意.
故选:A.
【点睛】
本题考查了勾股定理的逆定理和三角形内角和定理,能熟记勾股定理的逆定理和三角形内角和定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形,三角形的内角和等于180°.
3.C
解析:C
【解析】
【分析】
由平行四边形的判定方法分别对各个条件进行判断即可.
【详解】
解:①,,根据“两组对边分别平行的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故①正确;
②,,根据“两组对边分别相等的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故②正确;
③,,不能判定四边形ABCD是平行四边形,故③不符合题意;
④,,根据“对角线互相平分的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故④正确;
⑤由,可得到,根据“两组对边分别平行的四边形是平行四边形” 能判定四边形ABCD是平行四边形,故⑤正确;
所以,正确的结论有4个,
故选:C
【点睛】
本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.
4.C
解析:C
【解析】
【分析】
根据加权平均数的计算方法进行计算即可.
【详解】
解:3+4+3=10,
88×+72×+50×=70.2.
故小王的招聘得分为70.2.
故选:C.
【点睛】
本题考查加权平均数的意义和计算方法,掌握加权平均数的计算方法是正确计算的前提.
5.C
解析:C
【分析】
根据三角形的中位线定理和平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的判定定理解答即可.
【详解】
解:∵E、F、G、H分别是四边形ABCD各边中点,
∴EH=BD,EH∥BD,FG=BD,FG∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH是平行四边形,
当AC⊥BD时,AC⊥EH,
∴EH⊥EF,
∴四边形EFGH为矩形,
故选:C.
【点睛】
本题考查的是三角形的中位线定理和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6.C
解析:C
【解析】
【分析】
根据接近度的意义,逐项计算判断即可.
【详解】
解:菱形的两个相邻内角、越接近,菱形越接近于正方形,也就是说的值越小,菱形越接近于正方形,即接近度越大的菱形越接近于正方形,故A正确,不符合题意;
有一个内角等于100°的菱形的两个邻角的度数分别为100°和80°,,故B正确,不符合题意;
∵菱形的两个相邻内角分别为、,
∴,的取值范围是,故C错误,符合题意;
当时,,所以该菱形是正方形,故D正确,不符合题意;
故选:C.
【点睛】
本题考查了菱形与正方形的性质,正方形的判定,正确理解“接近度”的意思是解决问题的关键.
7.C
解析:C
【解析】
【分析】
根据题意得,在中,利用勾股定理可得,从而得到,即可求解.
【详解】
解:如图,
由题意知:,,,.
.
在中,,
.
.
∴数轴上点表示的数为.
故选:C.
【点睛】
本题主要考查了勾股定理,数轴与实数,尺规作图——作一条线段等于已知线段,熟练掌握相关知识点是解题的关键.
8.C
解析:C
【分析】
根据函数图象中的数据可以求得甲步行的速度、乙骑自行车的速度、乙一共所用的时间,从而得出乙步行的速度、自行车还车点与学校的距离,求出乙到还车点时,甲、乙所用的时间,即可得出路程差,根据乙到学校时,所用时间为19分,此时甲所用的时间为31分,则可求出甲距学校的路程.
【详解】
由图可得:
甲步行的速度为:960÷12=80(米/分),
乙骑自行车的速度为:[960+(20-12)×80]÷(20-12)=200(米/分),故A错误;
乙步行的速度为:80-5=75(米/分)
乙一共所用的时间:31-12=19(分)
设自行车还车点距学校x米,则:
解得:x=300.
故C正确;
乙到还车点时,乙所用时间为:(2700+300)÷200=15(分)
乙到还车点时,甲所用时间为:12+15=27(分)
路程差=2700+300-80×27=840(米),故B错误;
乙到学校时,所用时间为19分,而甲所用的时间=12+19=31(分),甲距学校的路程=2700-80×31=220(米),故D错误.
故选C.
【点睛】
本题考查了根据函数图象获取信息,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题
9.且
【解析】
【分析】
根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.
【详解】
解:由题意得,x+2≥0,x≠0,
解得,x≥-2且x≠0,
故答案为:x≥-2且x≠0.
【点睛】
本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.
10.A
解析:
【解析】
【分析】
连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.
【详解】
解:过点A作AM⊥BC于点M,
∵菱形的边长为2cm,
∴AB=BC=2cm,
∵有一个内角是60°,
∴∠ABC=60°,
∴∠BAM=30°,
∴(cm),
∴(cm),
∴此菱形的面积为:(cm2).
故答案为:.
【点睛】
本题主要考查了菱形的性质和30°直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.
11.A
解析:150
【解析】
【分析】
根据坡比的定义,得到AC和BC的关系,利用勾股定理求出AB和AC的关系,从而求解.
【详解】
如图,在中,
由题意可知,
∴,
∴,
∴米,
故答案为:150.
【点睛】
本题考查了坡度坡比的定义,利用勾股定理解直角三角形,解题的关键是掌握坡比的定义.
12.D
解析:
【分析】
设DE=x,则CE=8-x,根据折叠的性质知:CE=8-x.在直角△AED中,利用勾股定理列出关于x的方程并解答即可.
【详解】
解:如图,在矩形ABCD中,AB=DC=8,AD=6.
设DE=x,则CE=8-x,
根据折叠的性质知:AE=CE=8-x.
在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8-x)2.
解得x=.
即DE的长为.
故答案是:.
【点睛】
本题主要考查了翻折变换(折叠问题),矩形的性质,解题时,借用了方程思想,求得了相关线段的长度.
13.A
解析:-3
【分析】
根据题意直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),然后根据待定系数法即可求得k的值.
【详解】
解:∵直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),
∴,
解得k=﹣3,
故答案为:-3.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键.
14.A
解析:
【分析】
根据菱形的判定即可得出答案.
【详解】
∵四边形ABCD是对角线互相垂直的四边形,且OB=OD,,
∴四边形ABCD是菱形,
故答案为:.
【点睛】
本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.
15.【分析】
作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE
解析:
【分析】
作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,然后求出F、G的坐标从而求出直线FG的解析式,再求出直线AB和直线FG的交点坐标即可得到答案.
【详解】
解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E,
由轴对称的性质可知,CD=DF,CE=GE,BF=BC,∠FBD=∠CBD,
∴△CDE的周长=CD+CE+DE=FD+DE+EG,
∴要使三角形CDE的周长最小,即FD+DE+EG最小,
∴当F、D、E、G四点共线时,FD+DE+EG最小,
∵直线y=x+2与两坐标轴分别交于A、B两点,
∴B(-2,0),
∴OA=OB,
∴∠ABC=∠ABD=45°,
∴∠FBC=90°,
∵点C是OB的中点,
∴C(,0),
∴G点坐标为(1,0),,
∴F点坐标为(-2,),
设直线GF的解析式为,
∴,
∴,
∴直线GF的解析式为,
联立,
解得,
∴D点坐标为(,)
故答案为:(,).
【点睛】
本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到△CDE周长的最小时点D、点E位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
16.y=﹣x+10
【分析】
过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y
解析:y=﹣x+10
【分析】
过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y=kx+10,把C(10,8)代入求出直线BC的解析式.
【详解】
解:过A作AM⊥y轴,交y轴于M,交CD于N,则∠BMA=∠ANC=90°,
∵∠BAC=90°,
∴∠BAM+∠CAN=90°,∠BAM+∠ABM=90°,
∴∠ABM=∠CAN,
∵A(4,4),
∴OM=DN=4,AM=4,
在△ABM和△CAN中,
∴△ABM≌△CAN(AAS),
∴AN=BM,CN=AM=4,
∵ED=5EC,
∴设EC=a,ED=5a,
∵A(4,4),
∴点A在直线y=x上,
∵CN=4a﹣4,
则4a﹣4=4,
∴a=2,即CD=8,ED=10.
∵点E在直线y=x上,
∴E(10,10),
∴MN=10,C(10,8),
∴AN=BM=10﹣4=6,
∴B(0,10),
设直线BC的解析式是y=kx+10,
把C(10,8)代入得:k=﹣,
即直线BC的解析式是y=﹣x+10,
故答案为:y=﹣x+10.
【点睛】
本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定等,主要考查学生综合运用性质进行推理和计算的能力.
三、解答题
17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用
解析:(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用二次根式的混合运算法则计算得出答案;
(4)直接利用二次根式的性质化简,进而得出答案.
【详解】
解:(1)2﹣6×
=6
=6
=;
(2)(﹣2)2﹣(﹣2)(+2)
=5+4-4-(13-4)
=9-4-9
=-4;
(3)(1+)•(2﹣)
=2-
=-1+;
(4)
=
=
=.
【点睛】
本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键.
18.游船移动的距离AD的长是9米
【分析】
根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.
【详解】
解:工作人员以0.7米/秒的速度拉绳子,
经过10秒
解析:游船移动的距离AD的长是9米
【分析】
根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.
【详解】
解:工作人员以0.7米/秒的速度拉绳子,
经过10秒拉回绳子米,
开始时绳子AC的长为17m,
拉了10秒后,绳子CD的长为17-7=10米,
在中,
米,
在中,
米,
AD=15-6=9米,
答:游船移动的距离AD的长是9米.
【点睛】
本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.
19.(1)见解析;(2)见解析;(3)见解析.
【解析】
【分析】
(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;
(2)
解析:(1)见解析;(2)见解析;(3)见解析.
【解析】
【分析】
(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;
(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD.
(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可.
【详解】
解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC;
(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD;
(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等.
【点睛】
本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键.
20.(1)见解析;(2)四边形CDBF是菱形,理由见解析
【分析】
(1)证△CEF≌△BED(ASA),得CF=BD,再由CF∥DB,即可得出结论;
(2)由直角三角形斜边上的直线性质得CD=DB,即
解析:(1)见解析;(2)四边形CDBF是菱形,理由见解析
【分析】
(1)证△CEF≌△BED(ASA),得CF=BD,再由CF∥DB,即可得出结论;
(2)由直角三角形斜边上的直线性质得CD=DB,即可证平行四边形CDBF是菱形.
【详解】
(1)证明:∵CF∥AB,
∴∠ECF=∠EBD,
∵E是BC中点,
∴CE=BE,
在△CEF和△BED中,
∴△CEF≌△BED(ASA),
∴CF=BD,
又∵CF∥AB,
∴四边形CDBF是平行四边形.
(2)解:四边形CDBF是菱形,理由如下:
∵D为AB的中点,∠ACB=90°,
∴CD=AB=BD,
由(1)得:四边形CDBF是平行四边形,
∴平行四边形CDBF是菱形.
【点睛】
本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF≌△BED是解题的关键,属于中考常考题型.
21.答案见解析.
【解析】
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
刘峰的解法错误,
原因是:错误地运用了=这个公式,
正确解法是:∵a==<1,
∴a﹣1<0,
∴=
=
=
=
解析:答案见解析.
【解析】
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
刘峰的解法错误,
原因是:错误地运用了=这个公式,
正确解法是:∵a==<1,
∴a﹣1<0,
∴=
=
=
=﹣,
∴原式=﹣.
【点睛】
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
22.当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算
解析:当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算
【分析】
先根据方案分别求出和,再分三种情况分别计算即可得到答案.
【详解】
解:根据题意得:;
,
当时,,解得x>250;
当时,,解得x=250;
当时,,解得x<250;
答:当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算.
【点睛】
此题考查方案选择问题,解一元一次方程及一元一次不等式,正确求出和是解题的关键.
23.(1)y=-x+6;(2)①;②,或或,
【分析】
(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;
(2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2
解析:(1)y=-x+6;(2)①;②,或或,
【分析】
(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;
(2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2,作∠DHF=45°,利用AAS证明△ADE≌△HFD,再运用等腰直角三角形性质即可求出答案;
②将D(-1,n)代入y=x+6中,得D(-1,5),过D作DM⊥x轴于M,作FN⊥DM于N,如图3,利用AAS可证得△FDN≌△DEM,进而得出F(4,6),再根据∠DGF=∠DGO分类讨论即可.
【详解】
解:(1)交轴于点,交轴于点,
,,
与关于轴对称,
,
设直线为:,将、坐标代入得
,解得,
直线的函数解析式为:;
(2)①将点代入中,得:
,解得:,
,
如图2,作,
,
,
,,
,
在和中,
,
,
,,
又,,
和均为等腰直角三角形,
,
,
,
是等腰直角三角形,
,
,
.
②将代入中,得:,
,则,,
过作轴于,作于,如图3,
,,
,,
,
在和中,
,
,
,,
,,
,
当点、、三点共线时,如图3,,
设直线的解析式为,
,
,
解得:,
直线的解析式为,
当时,,
,;
如图4,连接DG2,FG2,
过点D作DM⊥OG2,DN⊥FG2,
∵,
∴DM=DN,又DO=DF,
∴(HL),
∴∠ODM=∠FDN,又∠ODN+∠FDN=90°,
∴∠ODM+∠ODN=90°,即∠MDN=90°,
∴四边形DMG2N是正方形,
∴∠OG2F=90°,
设,
,
,
,
解得:,
;
当平分时,如图5,
,,
,
又,
,
设与交于点,
,
,,
,
设直线解析式为,
,,
,
解得:,
直线解析式为,
联立方程组,
解得:,
,;
综上所述,符合条件的的坐标为,或或,.
【点睛】
本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.
24.(1),;(2)或;(3)存在,或或.
【解析】
【分析】
(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.
(2)设G(0,n)分两种情形:①当时,如图中,点落在上时,过作直线
解析:(1),;(2)或;(3)存在,或或.
【解析】
【分析】
(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.
(2)设G(0,n)分两种情形:①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.求出.②当时,如图中,同法可得,利用待定系数法即可解决问题.
(3)由,得,,即得直线为,设,,①以、为对角线,此时、中点重合,而中点为,,中点为,,即得,解得;②以、为对角线,同理可得:;③以、为对角线,同理.
【详解】
解:(1)直线与轴交于点,与轴交于点,
,,
,,
,
,
,
,
设直线的解析式为,则有,
解得,
直线的解析式为;
(2),,,
,
设,
①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.
四边形是正方形,
,,
,
而,
,
,,
,
点在直线上,
,
,
;
②当时,如图中,同法可得,
点在直线上,
,
,
.
综上所述,满足条件的点坐标为或;
(3)存在,理由如下:
,,为线段的中点,
,,
设直线为,则,
解得,
直线为,
设,,
①以、为对角线,此时、中点重合,而中点为,,中点为,,
,解得,
;
②以、为对角线,同理可得:
,解得,
;
③以、为对角线,同理可得:
,解得,
;
综上所述,的坐标为:或或.
【点睛】
本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题
25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.
【分析】
(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS)
解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.
【分析】
(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题.
(2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1).
(3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1).
【详解】
解:(1)探究问题:结论:AD=AB+DC.
理由:如图①中,延长AE,DC交于点F,
∵AB∥CD,
∴∠BAF=∠F,
在△ABE和△FCE中,
CE=BE,∠BAF=∠F,∠AEB=∠FEC,
∴△ABE≌△FEC(AAS),
∴CF=AB,
∵AE是∠BAD的平分线,
∴∠BAF=∠FAD,
∴∠FAD=∠F,
∴AD=DF,
∵DC+CF=DF,
∴DC+AB=AD.
故答案为AD=AB+DC.
(2)方法迁移:结论:AB=AF+CF.
证明:如图②,延长AE交DF的延长线于点G,
∵E是BC的中点,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC
∴△AEB≌△GEC(AAS)
∴AB=GC
∵AE是∠BAF的平分线
∴∠BAG=∠FAG,
∵∠BAG∠G,
∴∠FAG=∠G,
∴FA=FG,
∵CG=CF+FG,
∴AB=AF+CF.
(3)联想拓展:结论;AB=DF+CF.
证明:如图③,延长AE交CF的延长线于点G,
∵E是BC的中点,
∴CE=BE,
∵AB∥CF,
∴∠BAE=∠G,
在△AEB和△GEC中,
,
∴△AEB≌△GEC,
∴AB=GC,
∵∠EDF=∠BAE,
∴∠FDG=∠G,
∴FD=FG,
∴AB=DF+CF.
【点睛】
本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文