资源描述
部编版八年级数学下册期末试卷专题练习(word版
一、选择题
1.成立的条件是( )
A.﹣1≤a≤1 B.a≤﹣1 C.a≥1 D.﹣1<a<1
2.下列长度的线段中,能构成直角三角形的一组是( )
A.2,3,4 B.5,7,8 C.5,10,13 D.1,,2
3.如图,在四边形ABCD中,AB∥CD,添加下列一个条件后,定能判定四边形ABCD是平行四边形的是( )
A.AB=BC B.AC=BD C.∠A=∠C D.∠A=∠B
4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )
A.中位数 B.平均数 C.众数 D.方差
5.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )
A.ABDC B.AC=BD C.AC⊥BD D.AB=DC
6.如图所示,是将长方形纸片沿折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对
A.2 B.3 C.4 D.5
7.如图,作,,;以A为圆心,以AC长为半径画弧,交斜边AB与点D;以B为圆心,以BD长为半径画弧,交BC与点E.若,则( )
A. B. C. D.
8.如图1,动点P从菱形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D.设点P的运动时间为(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则a的值为( )
A. B. C.2 D.2
二、填空题
9.若二次根式在实数范围内有意义,则的取值范围是____.
10.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD的面积是_____cm2.
11.在中,,,,则______.
12.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为___.
13.有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度(米)与注水时间(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为______小时.
14.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件_____,则四边形ABCD为菱形.
15.直线y=x+3与两坐标轴围成的三角形面积是 __________________.
16.如图,在直角坐标系中,点、的坐标分别为和,点是轴上的一个动点,且、、三点不在同一条直线上,当的周长最小时点的坐标是______.
三、解答题
17.计算题
(1)+2+3;
(2)()×;
(3)(1﹣)0;
(4)(+1)(﹣1)﹣.
18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.
(1)A城是否受到这次沙尘暴的影响?为什么?
(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?
19.如图,每个小正方形的边长都为.
(1)求线段与的长;
(2)求四边形的面积与周长;
(3)求证:.
20.如图,在正方形中,点,在上,且.
求证:(1).
(2)四边形是菱形.
21.阅读下列材料,然后回答问题:
在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:
方法一:
方法二:
(1)请用两种不同的方法化简:;
(2)化简:.
22.某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.
(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;
(2)印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3000元用于印刷上述宣传材料,选择哪一家印刷厂能多印制一些宣传材料?
23.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.
(1)求点E的坐标;
(2)点P从O出发,沿折线O-A-E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,井直接写出t的取值范围.
(3)在(2)的条件下.当PA =PE时,在平面直角坐标系中是否存在点Q.使得以点P、E、 G、 Q为顶点的四边形为平行四边形? 若不存在,请说明理出, 若存在,请求出点Q的坐标.
24.如图,点,过点做直线平行于轴,点关于直线对称点为.
(1)求点的坐标;
(2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;
(3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.
25.如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图.
(1)点B的坐标为(3,0);
①若点P的横坐标为,点Q与点B重合,则点P、Q的“涵矩形”的周长为 .
②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是 .
(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;
①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.
②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
直接利用二次根式有意义的条件、二次根式的乘法运算法则得出关于a的不等式组,进而得出答案.
【详解】
解:由题意可得:,
解得:a≥1,
故选:C.
【点睛】
本题考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
2.D
解析:D
【分析】
若三角形三边满足,则三角形是直角三角形,根据勾股定理逆定理即可求解.
【详解】
解:A. 因为22+3242,所以不能构成直角三角形,因此A不符合题意;
B. 因为52+7282,所以不能构成直角三角形,因此B不符合题意;
C. 因为52+102132,所以不能构成直角三角形,因此C不符合题意;
D. 因为,所以能构成直角三角形,因此D符合题意;
故选D.
【点睛】
本题主要考查勾股定理的逆定理,解决本题的关键是要熟练掌握勾股定理逆定理.
3.C
解析:C
【解析】
【分析】
利用平行线的判定与性质结合平行四边形的判定得出即可.
【详解】
∵ABCD,
∴∠B+∠C=180°,
当∠A=∠C时,则∠A+∠B=180°,
故ADBC,
则四边形ABCD是平行四边形.
故选C.
【点睛】
本题考查了平行四边形的判定,掌握平行四边形的判定是解题的关键.
4.A
解析:A
【解析】
【分析】
由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.
【详解】
解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,
要判断是否进入前8名,故应知道自己的成绩和中位数.
故选:A.
【点睛】
本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.
5.C
解析:C
【分析】
根据三角形的中位线定理和平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的判定定理解答即可.
【详解】
解:∵E、F、G、H分别是四边形ABCD各边中点,
∴EH=BD,EH∥BD,FG=BD,FG∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH是平行四边形,
当AC⊥BD时,AC⊥EH,
∴EH⊥EF,
∴四边形EFGH为矩形,
故选:C.
【点睛】
本题考查的是三角形的中位线定理和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6.C
解析:C
【解析】
【分析】
从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CDB.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.
【详解】
解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,
∴C′D=CD,BC′=BC,
∵BD=BD,
∴△CDB≌△C′DB(SSS),
同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.
所以,共有4对全等三角形.
故选:C.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.
7.A
解析:A
【解析】
【分析】
根据勾股定理求出AB,再根据圆的定义可求得AD=AC,BE=BD即可求解.
【详解】
解:∵,,
∴AC=3,
在中,,由勾股定理得:
,
由题意,AD=AC=3,BE=BD=AB-AD=-3,
∴CE=BC-BE=6-(-3)=9-,
故选:A.
【点睛】
本题考查圆的定义、勾股定理,熟练掌握勾股定理是解答的关键.
8.B
解析:B
【分析】
由图2知,菱形的边长为a,对角线AC=,则对角线BD为22,当点P在线段AC上运动时,yAPBDx,即可求解.
【详解】
解:由图2知,菱形的边长为a,对角线AC,
则对角线BD为22,
当点P在线段AC上运动时,
yAPBDx,
由图2知,当x时,y=a,
即a,
解得:a,
故选:B.
【点睛】
本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
二、填空题
9.
【解析】
【分析】
根据二次根式有意义的条件可直接进行求解.
【详解】
解:由二次根式在实数范围内有意义可得:
,解得:;
故答案为.
【点睛】
本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.
10.A
解析:96
【解析】
【分析】
根据菱形的性质可得AC⊥BD,然后利用勾股定理求出OB=8cm,得出BD=16cm,最后根据菱形的面积公式求解.
【详解】
解:∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC=AC=6cm,OB=OD,
∴OB==8(cm),
∴BD=2OB=16cm,
∴S菱形ABCD=AC•BD=×12×16=96(cm2).
故答案为:96.
【点睛】
本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.
11.
【解析】
【分析】
根据勾股定理即可求得的长度.
【详解】
在直角中,,
∴根据勾股定理,
∴,
故答案为:.
【点睛】
本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.
12.D
解析:5
【分析】
设DE=x,则AE=8-x.先根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,然后在直角三角形ABE中根据勾股定理即可求解.
【详解】
解:设DE=x,则AE=8-x.
根据折叠的性质,得∠EBD=∠CBD.
∵AD∥BC,
∴∠CBD=∠ADB,
∴∠EBD=∠EDB,
∴BE=DE=x.
在直角三角形ABE中,根据勾股定理,得
x2=(8-x)2+16,
解得x=5.
故答案为:5.
【点睛】
本题主要考查了矩形与折叠问题、平行线的性质、等角对等边的性质和勾股定理,难度适中.
13.
【分析】
根据函数图像分别求出甲乙对应的函数解析式,令相等即可求得答案.
【详解】
设甲的解析式为:,
甲的函数图像经过,
,
解得,
,
设乙的解析式为:,
乙的函数图像经过,
,
解得,
,
令,
即,
解得.
故答案为:.
【点睛】
本题考查了一次函数应用,待定系数法求解析式,求一次函数的交点,根据图像获得信息是解题的关键.
14.A
解析:OA=OC
【分析】
添加条件OA=OC,先证四边形ABCD是平行四边形,再由AC⊥BD,即可得出平行四边形ABCD是菱形.
【详解】
.解:添加一个条件OA=OC,则四边形ABCD为菱形,
理由如下:
∵AC平分BD,OA=OC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴平行四边形ABCD是菱形,
故答案为:OA=OC.
【点睛】
此题主要考查了菱形的判定以及平行四边形的判定,熟练掌握菱形的判定和平行四边形的判定与性质是解题的关键.
15.【分析】
利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积.
【详解】
解:当x=0时,y=3,
∴直线
解析:
【分析】
利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积.
【详解】
解:当x=0时,y=3,
∴直线y=x+3与y轴的交点坐标为(0,3);
当y=0时,x+3=0,解得:x=﹣3,
∴直线y=x+3与x轴的交点坐标为(﹣3,0).
∴直线y=x+3与两坐标轴围成的三角形面积为×|﹣3|×3=.
故答案为:.
【点睛】
本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
16.(0,4).
【分析】
根据线段垂直平分线的性质,可得B′点,根据待定系数法求函数解析式,根据自变量的值,可得相应的函数值
【详解】
解:作B点关于y轴的对称点B′,连接AB′,交y轴于C点,
B
解析:(0,4).
【分析】
根据线段垂直平分线的性质,可得B′点,根据待定系数法求函数解析式,根据自变量的值,可得相应的函数值
【详解】
解:作B点关于y轴的对称点B′,连接AB′,交y轴于C点,
B′点的坐标是(-4,0),
设AB′的函数解析式为y=kx+b,图象经过(-4,0),(1,5),得
解得
AB′的函数解析式为y=x+4
自变量的值为零时,y=4
当△ABC周长最小时,C点坐标为(0,4).
故答案为:(0,4).
【点睛】
本题考查了一次函数综合题,(1)利用了待定系数法求函数解析式;(2)利用了线段垂直平分线的性质,两点之间线段最短.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据立方根以及二次根式的加减运算求解即可;
(2)根据二次根式的四则运算求解即可;
(3)根据二次根式的除法以及零指数幂的运算求解即可;
(4)根据平
解析:(1);(2);(3);(4)
【分析】
(1)根据立方根以及二次根式的加减运算求解即可;
(2)根据二次根式的四则运算求解即可;
(3)根据二次根式的除法以及零指数幂的运算求解即可;
(4)根据平方差公式以及二次根式的加减运算,求解即可.
【详解】
解:(1);
(2);
(3);
(4);
【点睛】
此题考查了二次根式的四则运算,涉及了零指数幂、立方根以及平方差公式,解题的关键是熟练掌握二次根式的有关运算.
18.(1)受影响,理由见解析;(2)15小时
【分析】
(1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否
解析:(1)受影响,理由见解析;(2)15小时
【分析】
(1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否受到这次沙尘暴的影响;
(2)如图,设点E、F是以A为圆心,150km为半径的圆与BM的交点,根据勾股定理可以求出CE的长度,也就求出了EF的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.
【详解】
解:(1)过点A作AC⊥BM,垂足为C,
在Rt△ABC中,由题意可知∠CBA=30°,
∴AC=AB=×240=120,
∵AC=120<150,
∴A城将受这次沙尘暴的影响.
(2)设点E,F是以A为圆心,150km为半径的圆与MB的交点,连接AE,AF,
由题意得,,CE=90
∴EF=2CE=2×90=180
180÷12=15(小时)
∴A城受沙尘暴影响的时间为15小时.
【点睛】
本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.
19.(1),;(2)四边形的面积,的周长;(3)见解析
【解析】
【分析】
(1)利用勾股定理直接计算即可得到答案;
(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;
解析:(1),;(2)四边形的面积,的周长;(3)见解析
【解析】
【分析】
(1)利用勾股定理直接计算即可得到答案;
(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;
(3)利用勾股定理的逆定理证明即可.
【详解】
解:(1),;
(2),
四边形的周长,
四边形的面积
(3)连接,
,
,
,
,
.
【点睛】
本题考查的是勾股定理与勾股定理的逆定理的应用,掌握利用勾股定理求解边长,利用勾股定理的逆定理判断直角三角形是解题的关键.
20.(1)见解析;(2)见解析
【分析】
(1)根据边角边证明全等即可得出结论;
(2)同理可得,然后证明,即可得出,结论可得.
【详解】
解:(1)∵四边形是正方形,
∴,
,
在和中,
,
∴,
∴
解析:(1)见解析;(2)见解析
【分析】
(1)根据边角边证明全等即可得出结论;
(2)同理可得,然后证明,即可得出,结论可得.
【详解】
解:(1)∵四边形是正方形,
∴,
,
在和中,
,
∴,
∴.
(2)同理可得,
可得,
∵,
∴,即,
在和中,
,
∴,
∴,
∴,
∴四边形是菱形.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.
21.(1);(2)
【解析】
【分析】
(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;
(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.
【详解】
解:(1)
解析:(1);(2)
【解析】
【分析】
(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;
(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.
【详解】
解:(1)方法一:===-;
方法二:===-;
(2)原式=(-+-+-+…+﹣)=(﹣)=-.
故答案为(1)-;(2)-.
【点睛】
此题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法.
22.(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料
【分析】
(1)根据“甲印刷厂的收
解析:(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料
【分析】
(1)根据“甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费”可得甲厂关系式,根据“乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费”可得乙厂关系式;
(2)把x=800代入两厂关系式进行计算即可得哪厂比较合算;把y=3000代入两厂关系式进行计算可得哪厂能多印制一些宣传材料.
【详解】
解:(1)根据题意得:
y甲=x+1500,
y乙=2.5x;
(2)当x=800时,
y甲=800+1500=2300,
y乙=2.5×800=2000,
∵2300>2000,
∴印制800份宣传材料时,选择乙厂比较合算;
当y=3000时,
甲厂:3000=x+1500,解得x=1500,
乙厂:3000=2.5x,解得x=1200,
∵1500>1200,
∴商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料.
【点睛】
本题考查了一次函数的应用,理解题意是解题的关键.
23.(1);(2)或;(3)存在,点Q坐标为:,,
【分析】
(1)设AE=x,根据勾股定理列方程得:,解出可得结论;
(2)分两种情况:P在OA或AE上,分别根据三角形面积列式即可;
(3)先根据分别
解析:(1);(2)或;(3)存在,点Q坐标为:,,
【分析】
(1)设AE=x,根据勾股定理列方程得:,解出可得结论;
(2)分两种情况:P在OA或AE上,分别根据三角形面积列式即可;
(3)先根据分别计算PA和PE的长,分类讨论,当PE为边时,如图4,过G作GH⊥OC于H,设OF=y,根据勾股定理列方程可得y的值,利用面积法计算GH的长,得G的坐标,根据平行四边形的性质和平移规律可得Q的坐标;当PE为对角线时,借助中点坐标法即可求得点Q的坐标,综上即可得出点Q所有可能性.
【详解】
解:(1)在矩形ABCO中,B(8,4),
∴AB=8,BC=4,
设AE=x,则EC=x,BE=8-x,
Rt△EBC中,由勾股定理得:EB2+BC2=EC2,
∴
解得:x=5,
即AE=5,
∴E(5,4);
(2)分两种情况:
①当P在OA上时,0≤t≤2,如图2,
由题意知:,,,,
∴S=S矩形OABC-S△PAE-S△BEC-S△OPC,
=8×4-×5(4-2t)-×3×4-×8×2t,
=-3t+16,
②当P在AE上时,2<t≤4.5,如图3,
由题意知:
∴S=
综上所述:
(3)存在,由PA=PE可知:P在AE上
当PE为边时,如图4所示,过G作GH⊥OC于H,
∵AP+PE=5,
∴AP=3,PE=2,
设OF=y,则FG=y,FC=8-y,
由折叠得:∠CGF=∠AOF=,OA=CG,
由勾股定理得:FC2=FG2+CG2,
∴(8-y)2=y2+42,
解得:y=3,
∴FG=3,FC=8-3=5,
∴,
∴×5×GH=×3×4,
解得:GH=2.4,
由勾股定理得:FH,
∴OH=3+1.8=4.8,
∴G(4.8,-2.4),
∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,
∴Q(4.8,-2.4)或(6.8,-2.4).
当PE为对角线时,如图5所示:过点G作交CF于点H
由上述可知:,,,设
由中点坐标法可得:
解得:
∴点
综上所述:点Q的坐标为:,,
【点睛】
此题考查四边形综合题,矩形的性质、翻折变换、勾股定理、中点坐标法求解、平行四边形的判定和性质,解题的关键是学会用分类讨论的思想思考问题.
24.(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,).
【解析】
【分析】
(1)根据题意,点B、C关于点M对称,即可求出点C的坐标;
(2)由折叠的性质,得AB=CB,
解析:(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,).
【解析】
【分析】
(1)根据题意,点B、C关于点M对称,即可求出点C的坐标;
(2)由折叠的性质,得AB=CB,BD=AD,根据勾股定理先求出AM的长度,设点D为(1,a),利用勾股定理构造方程,即可求出点D坐标,然后利用待定系数法求直线BD.
(3)分两种情形:如图2中,当点P在第一象限时,连接BQ,PA.证明点P在AC的垂直平分线上,构建方程组求出交点坐标即可.如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,可得∠CAQ=∠CBP=30°,构建方程组解决问题即可.
【详解】
解:(1)根据题意,
∵点B、C关于点M对称,且点B、M、C都在x轴上,
又点B(),点M(1,0),
∴点C为(3,0);
(2)如图:
由折叠的性质,得:AB=CB=4,AD=CD=BD,
∵BM=2,∠AMB=90°,
∴,
∴点A的坐标为:(1,);
设点D为(1,a),则DM=a,BD=AD=,
在Rt△BDM中,由勾股定理,得
,
解得:,
∴点D的坐标为:(1,);
设直线BD为,则
,解得:,
∴直线BD为:;
(3)如图2中,当点P在第一象限时,连接BQ,PA.
∵△ABC,△CPQ都是等边三角形,
∴∠ACB=∠PCQ=60°,
∴∠ACP=∠BCQ,
∵CA=CB,CP=CQ,
∴△ACP≌△BCQ(SAS),
∴AP=BQ,
∵AD垂直平分线段BC,
∴QC=QB,
∴PA=PC,
∴点P在AC的垂直平分线上,
由,解得,
∴P(,).
如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,
∴∠CAQ=∠CBP=30°,
∵B(-1,0),
∴直线PB的解析式为,
由,解得:,
∴P(,).
【点睛】
本题属于一次函数综合题,考查了一次函数的性质,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.
25.(1)①9,②(1,2);(2)①(1,5)或(5,1),②522≤OM≤5
【解析】
【分析】
(1)①根据题意求出PE,EQ即可解决问题.
②求出点P、Q的“涵矩形”的长与宽即可判断.
(2)①
解析:(1)①9,②(1,2);(2)①(1,5)或(5,1),②
【解析】
【分析】
(1)①根据题意求出PE,EQ即可解决问题.
②求出点P、Q的“涵矩形”的长与宽即可判断.
(2)①求出正方形的边长,分两种情形分别求解即可解决问题.
②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断.
【详解】
解:(1)①如图1中,
由题意:矩形PEQF中,EQ=PF=3- ,
∴OE=EQ,
∵EP∥OA,
∴AP=PQ,
∴PE=QF=OA=3,
∴点P、Q的“涵矩形”的周长=(3+)×2=9.
②如图2中,
∵点P、Q的“涵矩形”的周长为6,
∴邻边之和为3,
∵矩形的长是宽的两倍,
∴点P、Q的“涵矩形”的长为2,宽为1,
∵P(1,4),F(1,2),
∴PF=2,满足条件,
∴F(1,2)是矩形的顶点.
(2)①如图3中,
∵点P、Q的“涵矩形”是正方形,
∴∠ABO=45°,
∴点A的坐标为(0,6),
∴点B的坐标为(6,0),
∴直线AB的函数表达式为y=-x+6,
∵点P的横坐标为3,
∴点P的坐标为(3,3),
∵正方形PMQN的周长为8,
∴点Q的横坐标为3-2=1或3+2=5,
∴点Q的坐标为(1,5)或(5,1).
②如图4中,
∵正方形PMQN的对角线为,
∴PM=MQ=1,
易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D,
∵OE=OF=5,
∴EF= ,
∵OD⊥EF,
∴ED=DF,
∴OD=EF= ,
∴OM的最大值为5,最小值为,
∴.
【点睛】
本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
展开阅读全文