资源描述
部编版八年级数学下册期末试卷练习(Word版含答案)
一、选择题
1.要使二次根式有意义的条件是( )
A. B. C. D.
2.在△ABC中,a,b,c为△ABC的三边,下列条件不能判定△ABC为直角三角形的是( )
A.a:b:c=1::2 B.a=32,b=42,c=52
C.a2=(c﹣b)(c+b) D.a=5,b=12,c=13
3.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )
A.1个 B.2个 C.3个 D.4个
4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数
方差
要从中选择一名发挥稳定的运动员去参加比赛,应该选择( )A.甲 B.乙
C.丙 D.丁
5.如图,正方形ABCD的边长为4,点M在AB上,且AM=1,N是BD上一动点,则AN+MN的最小值为( )
A.4 B. C.5 D.4
6.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
7.如图,在正方形中,,,分别为边,的中点,连接,,点,分别为,的中点,连接.则的长为( )
A. B.1 C. D.2
8.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是( )
A. B.10
C. D.12
二、填空题
9.函数中,自变量的取值范围是______.
10.已知菱形ABCD的面积为24,AC=6,则AB=___.
11.如图,每个小正方形的边长都为1,则的三边长,,的大小关系是________(用“>”连接).
12.在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=2,则BC的长为______.
13.若函数y=kx+3的图象经过点(3,6),则k=_____.
14.如图,在中,于点点分别是边的中点,请你在中添加一个条件:__________,使得四边形是菱形.
15.如图,直线l1:y=x+2与x轴交于点A,与y轴交于点B.直线l2:y=4x﹣4与y轴交于点C,与x轴交于点D,直线l1,l2交于点P.若x轴上存在点Q,使以A、C、P、Q为顶点的四边形是平行四边形,则点Q的坐标是 _____.
16.如图,在矩形中,点是线段上的一点,,将沿翻折,得到,若,,则点到的距离为______.
三、解答题
17.计算下列各式的值
(1)
(2)
(3)
(4)
18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?
19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;
(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.
20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形.
21.阅读下列解题过程:
====
===
请回答下列问题:
(1)观察上面的解题过程,请直接写出结果.
= .
(2)利用上面提供的信息请化简:
的值.
22.某市出租车收费标准分白天和夜间分别计费,计费方案见下列表格及图象(其中,,为常数)
行驶路程
收费标准
白天
夜间(22时至次日5时)
不超过的部分
起步价6元
起步价元
超过不超出的部分
每公里2元
每公里元
超出的部分
每公里3元
每公里元
设行驶路程为时,白天的运价为(元),夜间的运价为(元).如图,折线表示与之间的函数关系式,线段表示当时,与的函数关系式,根据图表信息,完成下列各题:
(1)填空:______,______,______;
(2)当时,求的函数表达式;
(3)若幸福小区到阳光小区的路程为,小明从幸福小区乘出租车去阳光小区,白天收费比夜间收费少多少元?
23.如图,正方形ABCD的顶点C处有一等腰直角三角形CEP,∠PEC=90°,连接AP,BE.
(1)若点E在BC上时,如图1,线段AP和BE之间的数量关系是 ;
(2)若将图1中的△CEP顺时针旋转使P点落在CD上,如图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)在(2)的基础上延长AP,BE交于F点,若DP=PC=2,求BF的长.
24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.
(1)点C的坐标是( , ),直线BC的表达式是 ;
(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;
(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;
25.如图,在Rt中,,,,动点D从点C出发,沿边向点B运动,到点B时停止,若设点D运动的时间为秒.点D运动的速度为每秒1个单位长度.
(1)当时, , ;
(2)用含t的代数式表示的长;
(3)当点D在边CA上运动时,求t为何值,是以BD或CD为底的等腰三角形?并说明理由;
(4)直接写出当是直角三角形时,t的取值范围 .
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据二次根式有意义的条件,即根号下为非负数,判断即可.
【详解】
解:∵有意义,
∴,
解得:,
故选:D.
【点睛】
本题主要考查二次根式有意义的条件,明确根号下为非负数是解题的关键.
2.B
解析:B
【分析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
【详解】
解:A、∵a:b:c=1::2,
∴设三边为:x,x,2x,
∵x2+(x)2=(2x)2,
∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;
B、∵(32)2+(42)2≠(52)2,
∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项符合题意;
C、∵a2=(c-b)(c+b),
∴a2+b2=c2,该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;
D、∵52+122=132,
∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;
故选:B.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.C
解析:C
【解析】
【详解】
试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.
故选C.
考点:平行四边形的判定
4.B
解析:B
【解析】
【分析】
首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.
【详解】
解:因为<<<,
所以乙最近几次选拔赛成绩的方差最小,
所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.
故选:B.
【点睛】
此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.C
解析:C
【分析】
连接AC,则直线AC即为BD的垂直平分线,点A与点C关于直线BD对称,连CM交BD于点N,则此时AN+MN的值最小,连接AN,根据垂直平分线的性质
可得AN=CN,从而得出AN+MN=CN+MN=CM,再根据勾股定理得出CM的长即可解决问题.
【详解】
解:在正方形ABCD中连接AC,则点A与点C是关于直线BD为对称轴的对称点,
∴连接MC交BD于点N,则此时AN+MN的值最小,
连接AN,
∵直线AC即为BD的垂直平分线,
∴AN=NC
∴AN+MN=CN+MN=CM,
∵四边形ABCD为正方形,AM=1
∴BC=4,BM=4-1=3,∠CBM=90°,
∴,
∴AN+MN的最小值是5.
故选:C.
【点睛】
本题考查了轴对称-最短路线问题,正方形的性质,勾股定理等知识点,此题的难点在于利用轴对称的方法确定满足条件的点N的位置.
6.C
解析:C
【解析】
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
7.B
解析:B
【解析】
【分析】
连接AM,延长AM交CD于G,连接FG,由正方形性质得,,,证得(AAS),得到,,根据三角形中位线定理得到,再用由勾股定理求出FG即可得MN.
【详解】
解:如图所示,连接AM,延长AM交CD于G,连接FG,
∵四边形ABCD是正方形,
∴,,,
∴,,
∵M是DE的中点,
∴EM=DM,
在和中,
∴(AAS),
∴,,
∴,
∵点N是为AF的中点,
∴,
∵F是BC的中点,
∴,
在中,根据勾股定理,
,
∴,
故选B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,三角形中位线定理和勾股定理,解题的关键是掌握并灵活运用这些知识点.
8.B
解析:B
【解析】
【分析】
点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.
【详解】
解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,
∵直线AB的解析式为y=-x+7,
∴直线CC″的解析式为y=x-1,
由
解得,
∴直线AB与直线CC″的交点坐标为K(4,3),
∵K是CC″中点,C(1,0),
设C″坐标为(m,n),
∴,解得:
∴C″(7,6).
连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,
△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=
故答案为10.
【点睛】
本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.
二、填空题
9.且
【解析】
【分析】
根据分式的分母不能为0、二次根式的定义即可得.
【详解】
由题意得:,
解得且,
故答案为:且.
【点睛】
本题考查了求函数自变量的取值范围、分式的分母不能为0、二次根式的定义,熟练掌握分式和二次根式的定义是解题关键.
10.B
解析:5
【解析】
【分析】
根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长.
【详解】
解:菱形ABCD的面积=AC•BD,
∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,
∴另一条对角线BD的长=8cm;
∵OA=OC,OB=OD,
∴OA=3,OB=4,
又∵AC⊥BD,
∴由勾股定理得:,
故答案为:5
【点睛】
本题考查了菱形的性质.菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键.
11.;
【解析】
【分析】
观察图形根据勾股定理分别计算出a、b、c,根据二次根式的性质即可比较a、b、c的大小.
【详解】
解:在图中,每个小正方形的边长都为1,由勾股定理可得:
,
,
,
∵,即,
∴,
故答案为:.
【点睛】
本题考查了勾股定理和比较二次根式的大小,本题中正确求出a、b、c的值是解题的关键.
12.A
解析:
【分析】
根据矩形的性质得出∠ABC=90°,AC=BD,AO=CO,BO=DO,求出AO=CO=BO,证得AOB是等边三角形,根据等边三角形的性质求出AO=CO=AB=2,根据勾股定理求出BC即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,AO=CO,BO=DO,
∴CO=AO=BO,
又∵∠AOB=60°,
∴AOB是等边三角形,
∵AB=2,
∴AB=AO=CO=2,
即AC=4,
在RtABC中,
由勾股定理得:BC===2,
故答案为:2.
【点睛】
本题考查了矩形的性质,等边三角形的性质和判定,勾股定理等知识点,能证出AOB是等边三角形是解此题的关键.
13.1
【解析】
∵函数y=kx+3的图象经过点(3,6),
∴,解得:k=1.
故答案为:1.
14.D
解析:
【分析】
根据菱形的性质可得,从而可得即为所添加的条件;理由:先根据等腰三角形的判定与性质可得点D是BC的中点,再根据三角形中位线定理、线段中点的定义可得,然后根据菱形的判定即可得.
【详解】
点分别是边的中点
要使四边形是菱形,则需,即
理由如下:
是等腰三角形
点D是BC的中点
是的两条中位线
又
四边形是菱形
故答案为:.
【点睛】
本题考查了等腰三角形的判定与性质、菱形的判定与性质、三角形中位线定理等知识点,掌握理解三角形中位线定理是解题关键.
15.(4,0)
【分析】
根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解.
【详解】
解:在y=x+2中,当y=0时,x+2=0,
解得:x=-2,
∴点A的坐标为(-2
解析:(4,0)
【分析】
根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解.
【详解】
解:在y=x+2中,当y=0时,x+2=0,
解得:x=-2,
∴点A的坐标为(-2,0),
在y=4x-4中,当x=0时,y=-4,
∴C点坐标为(0,-4),
联立方程组,
解得:,
∴P点坐标为(2,4),
设Q点坐标为(x,0),
∵点Q在x轴上,
∴以A、C、P、Q为顶点的四边形是平行四边形时,AQ和PC是对角线,
∴,
解得:x=4,
∴Q点坐标为(4,0),
故答案为:(4,0).
【点睛】
本题考查了一次函数的性质,平行四边形的性质,理解一次函数的图象性质,掌握平行四边形对角线互相平分,利用数形结合思想解题是关键.
16..
【分析】
过F作FG⊥EC与于G,根据,可得∠AED+∠BEC=90°,由四边形ABCD为矩形,可得∠CEB+∠ECB=90°,可证△AED∽△BCE,设AE=x,则BE=10-x,可得,解得,
解析:.
【分析】
过F作FG⊥EC与于G,根据,可得∠AED+∠BEC=90°,由四边形ABCD为矩形,可得∠CEB+∠ECB=90°,可证△AED∽△BCE,设AE=x,则BE=10-x,可得,解得,当AE=1时,BE=9,根据折叠与四边形ABCD为矩形可得EH=HC,设EH=HC=m,则HF=9-m,在Rt△FHC中由勾股定理得,即,当AE=9时,BE=1,可得 DH=HE,设DH=HE=n,则HF=HE-EF=n-1,HC=DC-DH=10-n,在Rt△HFC中,由勾股定理即,根据三角形面积即可.
【详解】
解:过F作FG⊥DC于G,EF(EF延长线)交CD于H,
∵
∴∠DEC=90°,
∴∠AED+∠BEC=90°,
∵四边形ABCD为矩形,
∴∠A=∠B=90°,AD=BC=3,
∴∠CEB+∠ECB=90°
∴∠AED=∠BCE,
∴△AED∽△BCE,
∴,
设AE=x,则BE=10-x,
∴,
整理得,
解得,
经检验都符合题意是原方程的解,
当AE=1时,BE=9,根据折叠,EF=EB=9,FC=BC=3,∠EFC=∠B=90°,∠BEC=∠FEC,
∵四边形ABCD为矩形
∴DC//AB,
∴∠HCE=∠BEC=∠HEC,
∴EH=HC,
设EH=HC=m,则HF=9-m,
在Rt△FHC中由勾股定理得,即
解得
∴S△FHC=,
∴,
当AE=9时,BE=1,根据折叠,EF=EB=1,FC=BC=3,∠EFC=∠B=90°,∠CEB=∠CEF,
∵四边形ABCD为矩形,
∴DC//AB,
∴∠HDE=∠AED,
∵∠DEH+∠FEC=∠AED+∠BEC=90°,
∴∠DEH =∠AED=∠HDE,
∴DH=HE,
设DH=HE=n,则HF=HE-EF=n-1,HC=DC-DH=10-n,
在Rt△HFC中,由勾股定理,即
解得
∴HC=10-5=5,HF=5-1=4
∴S△CHF=,
∴,
∴点到的距离为.
故答案为.
【点睛】
本题考查矩形性质,三角形相似判定与性质,折叠性质,勾股定理,三角形面积,掌握矩形性质,三角形相似判定与性质,折叠性质,勾股定理,三角形面积是解题关键.
三、解答题
17.(1);(2);(3)0;(4)或
【分析】
(1)根据二次根式的乘除计算法则求解即可;
(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;
(3)先根据二次根式的性质化简,然
解析:(1);(2);(3)0;(4)或
【分析】
(1)根据二次根式的乘除计算法则求解即可;
(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;
(3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;
(4)根据求平方根的方法解方程即可.
【详解】
(1)
;
(2)
;
(3)
;
(4)∵,
∴或,
解得或.
【点睛】
本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键.
18.6
【分析】
先根据勾股定理求得,进而求得,根据勾股定理即可求得范围.
【详解】
由题意可知,
则,
即,
解得,
若下次大风将旗杆从D处吹断,如图,
,
BD,
.
则距离旗杆底部周围6米范围内
解析:6
【分析】
先根据勾股定理求得,进而求得,根据勾股定理即可求得范围.
【详解】
由题意可知,
则,
即,
解得,
若下次大风将旗杆从D处吹断,如图,
,
BD,
.
则距离旗杆底部周围6米范围内有被砸伤的危险.
【点睛】
本题考查了勾股定理的应用,掌握勾股定理是解题的关键.
19.(1)见解析;(2)见解析;周长为4+2.
【解析】
【分析】
(1)直接利用网格结合正方形的性质得出符合题意的答案;
(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.
【详解】
(1)
解析:(1)见解析;(2)见解析;周长为4+2.
【解析】
【分析】
(1)直接利用网格结合正方形的性质得出符合题意的答案;
(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.
【详解】
(1)如图1,将绕点逆时针旋转得,
将绕点顺时针旋转得,
连接,正方形ABCD即为所求.
(2)如图2所示,
∴S▱ABEF
由题意可知:
平行四边形ABEF即为所求.周长为.
【点睛】
本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.
20.见解析
【分析】
根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.
【详解】
证明:∵矩形,
∴,,
∴,
在和中,
,
∴,
∴,
又∵,
∴四边形为平行四边形
解析:见解析
【分析】
根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.
【详解】
证明:∵矩形,
∴,,
∴,
在和中,
,
∴,
∴,
又∵,
∴四边形为平行四边形,
∵矩形,
∴,,
又∵,,,
∴,
,
∴,
∴四边形为菱形.
【点睛】
本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键.
21.(1)(3)
【解析】
【分析】
(1)利用已知数据变化规律直接得出答案;
(2)利用分母有理化的规律将原式化简进而求出即可.
【详解】
解:(1)
(2)利用上面提供的信息请化简:
﹣1.
【点
解析:(1)(3)
【解析】
【分析】
(1)利用已知数据变化规律直接得出答案;
(2)利用分母有理化的规律将原式化简进而求出即可.
【详解】
解:(1)
(2)利用上面提供的信息请化简:
﹣1.
【点睛】
考核知识点:实数运算.
22.(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元
【分析】
(1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出;
(2)利用表格中的数据求解即可;
(3
解析:(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元
【分析】
(1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出;
(2)利用表格中的数据求解即可;
(3)利用待定系数法求解求出当x>10时,y2与x之间的函数关系式,再把x=12分别代入y1和y2的函数表达式即可解答.
【详解】
解:解:(1)由图可知,a=7,
b=(26.2-7)÷(10-2)=2.4,
c=(29.8-26.2)÷(11-10)=3.6(元);
故答案为7,2.4,3.6;
(2)当2<x≤10时,求y1的函数表达式为y1=6+2(x-2)=2x+2;
(3)设当x>10时,y2与x之间的函数关系式为y2=kx+b,
根据题意得,,
解得:,
∴y2与x之间的函数关系式为y2=3.6x-9.8(x>10);
当x>10时,y1与x之间的函数关系式为6+2×(10-2)+3(x-10)=3x-8(x>10).
当x=12时,y2=3.6×12-9.8=33.4(元),y1=3×12-8=28(元),33.4-28=5.4(元),
答:白天收费比夜间收费少5.4元.
【点睛】
本题主要考查一次函数的应用问题,熟练掌握一次函数的性质是解答本题的关键.
23.(1)AP=BE;(2)成立,理由见解析;(3)
【分析】
(1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断;
(
解析:(1)AP=BE;(2)成立,理由见解析;(3)
【分析】
(1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断;
(2)过点B作BH⊥BE,且BH=BE,连接AH,EH,证明△ABH≌△BEC,得到AH=EC=PE,∠AHB=∠CEB,从而证明四边形AHEP是平行四边形,同理可得AP=EH=BE;
(3)过B,D分别作AF的垂线,垂足为K,M,证明△ABK≌△DAM,得到BK=AM,求出AP,在△ADP中利用面积法求出DM,可得AM和BK,再利用勾股定理求出BF即可.
【详解】
解:(1)∵点E在BC上,△PEC为等腰直角三角形,
∴PE=CE,∠PCE=45°,
∵四边形ABCD是正方形,
∴∠ACB=45°,
∴A,P,C三点共线,设正方形ABCD的边长为1,CE=x,
∴PE=x,PC=x,AC=,
∴AP=AC-PC=,BE=BC-CE=1-x,
∴AP=BE;
(2)成立,
如图,过点B作BH⊥BE,且BH=BE,连接AH,EH,
∵∠ABC=∠EBH=90°,
∴∠CBE+∠ABE=∠ABH+∠ABE=90°,
∴∠CBE=∠ABH,
又∵BH=BE,AB=BC,
∴△ABH≌△BEC(SAS),
∴AH=EC=PE,∠AHB=∠CEB,
∴∠AHE=∠AHB-∠EHB=∠CEB-45°,
∵∠HEP=360°-∠CEB-∠HEB-∠CEP
=360°-∠CEB-45°-90°
=225°-∠CEB,
∴∠AHE+∠HEP=∠CEB-45°+225°-∠CEB=180°,
∴AH∥PE,
∴四边形AHEP是平行四边形,
∴AP=EH=BE;
(3)如图,过B,D分别作AF的垂线,垂足为K,M,
∵∠BAD=∠BAK+∠DAM=90°,∠ABK+∠BAK=90°,
∴∠ABK=∠DAM,
又∵AB=AD,∠AKB=∠AMD=90°,
∴△ABK≌△DAM(AAS),
∴BK=AM,
∵四边形ABCD是正方形,DP=PC=2,
∴AD=CD=4,∠AHE=90°,
∴AP=,
∴S△ADP=,
∴,
∴,
∴AM=,
由(2)可知:△EBH为等腰直角三角形,HE∥AP,
∴∠KBF=∠HBE=45°,
∴∠F=45°,
∴BF==.
【点睛】
本题考查了正方形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.
24.(1),;(2)或;(3)存在,或或
【解析】
【分析】
(1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4;
(2)当D点在E
解析:(1),;(2)或;(3)存在,或或
【解析】
【分析】
(1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4;
(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,由△EDF是等腰直角三角形,可证得△MED≌△NDF(AAS),设D(0,y),F(m,﹣m+4),E(﹣1,2),由ME=y﹣2,MD=1,DN=y﹣2,NF=1,得到m=y﹣2,y=1+(﹣m+4)=5﹣m,求出D(0,);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q,同理可证△PED≌△QDF(AAS),设D(0,y),F(m,﹣m+4),得到PE=2﹣y,PD=1,DQ=2﹣y,QF=1,所以m=2﹣y,1=﹣m+4﹣y,求得D(0,﹣1);
(3)连接OG,由S△ABG=S△ABO,可得OG∥AB,求出AB的解析式为y=2x+4,所以OG的解析式为y=2x,可求出G( ,),进而能求出AG的解析式为y=x+,设M(t,t+),N(n,0),①当BC、MN分别为对角线时,BC的中点为(,2),MN的中点为(,t+),求得N(﹣,0);②当BM、CN分别为对角线时,BM的中点为(,t+),CN的中点为(,0),求得N(﹣,0);③当BN、CM分别为对角线时,BN的中点为(,2),CM的中点为(,t+),求得N(,0).
【详解】
解:(1)∵△ABC面积为10,
∴×AC×OB=×AC×4=10,
∴AC=5,
∵A(﹣2,0),
∴C(3,0),
将点B与C代入y=kx+b,可得,
∴,
∴y=﹣x+4,
故答案为(3,0),y=﹣x+4;
(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,
∵△EDF是等腰直角三角形,
∴∠EDF=90°,ED=DF,
∵∠MDE+∠NDF=∠MDE+∠MED=90°,
∴∠NDF=∠MED,
∴△MED≌△NDF(AAS),
∴ME=DN,MD=FN,
设D(0,y),F(m,﹣m+4),
∵E是AB的中点,
∴E(﹣1,2),
∴ME=y﹣2,MD=1,
∴DN=y﹣2,NF=1,
∴m=y﹣2,y=1+(﹣m+4)=5﹣m,
∴m=,
∴D(0,);
当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q,
∵△EDF是等腰直角三角形,
∴∠EDF=90°,ED=DF,
∵∠PDE+∠QDF=∠PDE+∠PED=90°,
∴∠QDF=∠PED,
∴△PED≌△QDF(AAS),
∴PE=DQ,PD=FQ,
设D(0,y),F(m,﹣m+4)
∵E是AB的中点,
∴E(﹣1,2),
∴PE=2﹣y,PD=1,
∴DQ=2﹣y,QF=1,
∴m=2﹣y,1=﹣m+4﹣y,
∴m=3,
∴D(0,﹣1);
综上所述:D点坐标为(0,﹣1)或(0,);
(3)连接OG,
∵S△ABG=S△ABO,
∴OG∥AB,
设AB的解析式为y=kx+b,
将点A(﹣2,0),B(0,4)代入,得,
解得,
∴y=2x+4,
∴OG的解析式为y=2x,
∴2x=﹣x+4,
∴x=,
∴G( ,),
设AG的解析式为y=k1x+b1,
将点A、G代入可得,
解得,
∴y=x+,
∵点M为直线AG上动点,点N在x轴上,
则可设M(t,t+),N(n,0),
当BC、MN分别为对角线时,
BC的中点为(,2),MN的中点为(,t+),
∴,t+=2,
∴t=,n=﹣,
∴N(﹣,0);
当BM、CN分别为对角线时,
BM的中点为(,t+),CN的中点为(,0),
∴,t+=0,
∴t=﹣,n=﹣,
∴N(﹣,0);
③当BN、CM分别为对角线时,
BN的中点为(,2),CM的中点为(,t+),
∴,t+=2,
∴t=,n=,
∴N(,0);
综上所述:以点B,C,M,N为顶点的四边形为平行四边形时,N点坐标为或或.
【点睛】
本题考查一次函数的综合应用,(2)中注意D点的位置有两种情况,避免丢解,同时解题时要构造K字型全等,将D点、F点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.
25.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒.
【分析】
(1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案;
解析:(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒.
【分析】
(1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案;
(2)由题意,可分为:,两种情况,分别表示出的长度即可;
(3)分①CD=BC时,CD=3;②BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,即可得到答案.
(4)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D在线段AB上运动,然后即可得解;
【详解】
解:(1)在Rt中,,,,
∴,
∵点D运动的速度为每秒1个单位长度,
∴当,点D在线段CA上;当,点D在线段AB上;
∴当时,点D在线段AB上,
∴,;
故答案为:1;3;
(2)根据题意,
当时,点D在线段CA上,且,
∴;
当时,点D在线段AB上,
∴;
(3)①CD=BC时,CD=3,t=3÷1=3;
②BD=BC时,如图,过点B作BF⊥AC于F,
设,则,
∴,
∴,
∴CD=2CF=1.8×2=3.6,
∴t=3.6÷1=3.6,
综上所述,t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形.
(4)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,
即=×4×3,
解得BD=2.4,
∴CD=,
∴t=1.8÷1=1.8秒;
②∠CBD=90°时,点D在线段AB上运动,
∴
综上所述,t=1.8或秒;
故答案为:或秒;
【点睛】
本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观.
展开阅读全文