收藏 分销(赏)

人教版七年级数学下册期末解答题培优卷.doc

上传人:精*** 文档编号:1755479 上传时间:2024-05-08 格式:DOC 页数:34 大小:1.23MB
下载 相关 举报
人教版七年级数学下册期末解答题培优卷.doc_第1页
第1页 / 共34页
人教版七年级数学下册期末解答题培优卷.doc_第2页
第2页 / 共34页
人教版七年级数学下册期末解答题培优卷.doc_第3页
第3页 / 共34页
人教版七年级数学下册期末解答题培优卷.doc_第4页
第4页 / 共34页
人教版七年级数学下册期末解答题培优卷.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、人教版七年级数学下册期末解答题培优卷一、解答题1已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和2如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?3工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,

2、)4如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?5张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二、解答题6已知:ABCD点E在CD上,点F,H在AB上,点

3、G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明7已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系8已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求

4、BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系9综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?请说明理由若点不在线段上运动时(点与点、

5、三点都不重合),请你画出满足条件的所有图形并直接写出,之间的数量关系10汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相

6、平行?三、解答题11已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论12如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分

7、CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)13如图,已知是直线间的一点,于点交于点(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒当时,求的度数;当时,求t的值14已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在线段CD上,点M在点N的左边且

8、满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数15(感知)如图,求的度数小明想到了以下方法:解:如图,过点作,(两直线平行,内错角相等)(已知),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补)(已知),(等式的性质)(等式的性质)即(等量代换)(探究)如图,求的度数(应用)如图所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_四、解答题16操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形

9、ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .17如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理

10、由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由18如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.19已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与B

11、ED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 20(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值【参考答案】一、解答题1(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三

12、角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交

13、点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键2(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个

14、面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.3(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,

15、求出,求出长方形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题4(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比

16、较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.5不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3

17、x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方

18、形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二、解答题6(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由

19、(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键7(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可解析:(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=

20、180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8(1)150;(2)OC

21、D+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AO

22、E=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-A

23、OB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键9(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论解析:(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;

24、(2);理由如下:如图,过作交于, , ; 当点在延长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系10(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中

25、给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键三、解答题11(1)146;(2)AOG+NEF=90;(3)见解析【分析】(

26、1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-9

27、0+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF=180,BCP=NEF,ACP+BCP=90,AOG+NEF=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=GOP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,1

28、35-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解12(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN

29、,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键13(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性

30、质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间解析:(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;根据题意可知,当时,分三种情况,射线由逆时针转动,根据题意可知,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;射线垂直时,再顺时针向运动时,根据题意可知,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;射线垂直时,再顺时针向运动时,根据题意

31、可知,根据(1)中结论,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论【详解】解:(1)延长与相交于点,如图1,;(2)如图2,射线运动的时间(秒,射线旋转的角度,又,;如图3所示,射线运动的时间(秒,射线旋转的角度,又,;的度数为或;当由运动如图4时,与相交于点,根据题意可知,经过秒,又,解得(秒;当运动到,再由运动到如图5时,与相交于点,根据题意可知,经过秒,运动的度数可得,解得;当由运动如图6时,根据题意可知,经过秒,又,解得(秒),当的值为秒或或秒时,【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键14(1)证明见解析;(2)(

32、);()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又

33、,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键15探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线解析:探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数【详解】解:探究如图,过点P作PMAB,MPE=AEP=50(两直线平行,内错角相等)ABCD(已知),PMCD(平行

34、于同一条直线的两直线平行),PFC=MPF=120(两直线平行,内错角相等)EPF=MPF-MPE=12050=70(等式的性质)答:EPF的度数为70;应用如图所示,EG是PEA的平分线,PG是PFC的平分线,AEG=AEP=25,GCF=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35答:G的度数是35故答案为:35【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质四、解答题16

35、解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的面积=BOC的面积的一半, A

36、OB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=1.5, AOB的面积=2AO

37、E的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.517(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=180,故可得出结论;(2)过E作EFA

38、B,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分BAC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BAE=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABC

39、D,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键18(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得

40、:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服