资源描述
人教版部编版八年级数学下册期末试卷专题练习(解析版)
一、选择题
1.若y=﹣3,则(x+y)2021等于( )
A.1 B.5 C.﹣5 D.﹣1
2.若线段a,b,c首尾顺次连接后能组成直角三角形,则它们的长度比可能为( )
A.2:3:4 B.3:4:5 C.4:5:6 D.5:6:7
3.如图,在四边形中,对角线相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A. B.
C. D.
4.在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )
A.育才中学参赛选手的平均成绩为88分
B.育才中学一共派出了八名选手参加
C.育才中学参赛选手的中位数为88分
D.育才中学参赛选手比赛成绩团体总分为704分
5.如图的网格中,每个小正方形的边长为1,A,B,C三点均在格点上,结论错误的是( )
A.AB=2 B.∠BAC=90° C. D.点A到直线BC的距离是2
6.如图,在中,,平分,将连续翻折两次,C点的对应点E点落在边上,B点的对应点F点恰好落在边上,则下列结论正确的是( )
A. B.
C. D.
7.如图,在中,,,,则的长是( )
A. B. C. D.
8.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为,甲、乙两车离AB中点C的路程千米与甲车出发时间时的关系图象如图所示,则下列说法错误的是( )
A.A,B两地之间的距离为180千米
B.乙车的速度为36千米时
C.a的值为
D.当乙车到达终点时,甲车距离终点还有30千米
二、填空题
9.在函数中,自变量x的取值范围是________.
10.已知菱形的周长等于8,一条对角线长为2,则此菱形的面积为___.
11.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m的A处,C处有食物,壁虎沿油罐的外侧面爬行到C处捕食,它爬行的最短路线长为_____m.
12.在平行四边形ABCD中,AB=5,AD=3,AC⊥BC,则BD的长为____.
13.如图,直线l的解析式为y=kx+b(k,b为常数,且k≠0),若0<kx+b<1.5,则自变量x的取值范围为_________.
14.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
15.将正方形,,按如图所示方式放置,点,,,…和点,,,…分别在直线和轴上,则点的坐标是______,的纵坐标是______.
16.如图,四边形纸片中,点,分别在边,上,将纸片沿直线折叠,点恰好落在点处;再将,分别沿,折叠,点,均落在上的点处.
(1)的大小为_____°;
(2)若四边形是菱形,点为中点且四边形纸片的面积是,则______.
三、解答题
17.计算:
(1);
(2);
(3);
(4).
18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米.(假设绳子是直的)
19.如图,网格中每个小正方形的边长都为1.
(1)求四边形的面积;
(2)求的度数.
20.如图,在正方形中,点,在上,且.
求证:(1).
(2)四边形是菱形.
21.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
请你根据小明的分析过程,解决如下问题:
(1)化简+++…+
(2)若a=,求4a2﹣8a+1的值.
22.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?
23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
24.在平面直角坐标系xOy中,对于任意两点M(x1,y1),N(x2,y2),我们将|x1﹣x2|+2|y1﹣y2|称为点M与点N的“纵2倍直角距离”,记作dMN.
例如:点M(﹣2,7)与N(5,6)的“纵2倍直角距离”dMN=|﹣2﹣5|+2|7﹣6|=9,
(1)①已知点P1(1,1),P2(﹣4,0),P3(0,),则在这三个点中,与原点O的“纵2倍直角距离”等于3的点是 ;
②已知点P(x,y),其中y≥0,若点P与原点O的“纵2倍直角距离”dPO=3,请在下图中画出所有满足条件的点P组成的图形.
(2)若直线y=2x+b上恰好有两个点与原点O的“纵2倍直角距离”等于3,求b的取值范围;
(3)已知点A(1,1),B(3,1),点T(t,0)是x轴上的一个动点,正方形CDEF的顶点坐标分别为C(t﹣,0),D(t,),E(t+,0),F(t,﹣).若线段AB上存在点G,正方形CDEF上存在点H,使得dGH=5,直接写出t的取值范围.
25.(解决问题)如图1,在中,,于点.点是边上任意一点,过点作,,垂足分别为点,点.
(1)若,,则的面积是______,______.
(2)猜想线段,,的数量关系,并说明理由.
(3)(变式探究)如图2,在中,若,点是内任意一点,且,,,垂足分别为点,点,点,求的值.
(4)(拓展延伸)如图3,将长方形沿折叠,使点落在点上,点落在点处,点为折痕上的任意一点,过点作,,垂足分别为点,点.若,,直接写出的值.
26.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.
(1)如图1,当点E与点D重合时,BF的长为 ;
(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)
(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.
【参考答案】
一、选择题
1.D
解析:D
【分析】
直接利用二次根式中的被开方数是非负数,进而得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算得出答案.
【详解】
解:由题意可得:x﹣2≥0且4﹣2x≥0,
解得:x=2,
故y=﹣3,
则(x+y)2021=﹣1.
故选:D.
【点睛】
此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数的符号是解题关键.
2.B
解析:B
【分析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;
B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;
C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;
D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.
故选:B.
【点睛】
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.C
解析:C
【解析】
【分析】
分别利用平行四边形的判定方法和全等三角形的判定与性质进行判断,即可得出结论.
【详解】
解:A、∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,故此选项不符合题意;
B、∵AB∥DC,
∴∠DAB+∠ADC=180°,
∵∠DAB=∠DCB,
∴∠DCB+∠ADC=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,故此选项不符合题意;
C、∵AO=CO,AB=DC,∠AOB=∠COD,不能判定△AOB≌△COD,
∴不能得到∠OAB=∠OCD,
∴不能得到AB∥CD,
∴不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、∵AB∥DC,
∴∠OAB=∠OCD,
在△AOB和△COD中,
,
∴△AOB≌△COD(AAS),
∴AB=DC,
又∵AB∥DC,
∴四边形ABCD是平行四边形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定与性质等知识,正确把握平行四边形的判定方法是解题关键.
4.C
解析:C
【解析】
【分析】
根据方差的计算公式中各数据的具体意义逐一分析求解即可.
【详解】
解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],
∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,
故选:C.
【点睛】
本题主要考查方差,解题的关键是掌握方差的定义和计算公式.
5.C
解析:C
【分析】
根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.
【详解】
解:AB=,故选项A正确,不符合题意;
∵AC=,BC,
∴,
∴△ACB是直角三角形,
∴∠CAB=90°,故选项B正确,不符合题意;
S△ABC,故选项C错误,符合题意;
点A到直线BC的距离,故选项D正确,不符合题意;
故选:C.
【点睛】
本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么 .熟记勾股定理的内容是解题得关键.
6.D
解析:D
【解析】
【分析】
设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.
【详解】
解:∵AB=AC,BD平分∠ABC,
设∠ABC=∠C=2x,则∠A=180°-4x,
∴∠ABD=∠CBD=x,
第一次折叠,可得:
∠BED=∠C=2x,∠BDE=∠BDC,
第二次折叠,可得:
∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,
∵∠BDE+∠BDC+∠FDE=180°,
∴∠BDE=∠BDC=∠FDE=60°,
∴x+2x+60°=180°,
∴x=40°,即∠ABC=∠ACB=80°,
∴∠A=20°,
∴∠EFD=∠EDB=40°,
∴∠AEF=∠EFD-∠A=20°,
∴AF=EF=BE=BC,
∴AD=AF+FD=BC+BD,
故选D.
【点睛】
本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.
7.B
解析:B
【解析】
【分析】
根据所对的直角边等于斜边的一半,然后根据勾股定理求解即可.
【详解】
解:∵在中,,,
∴,
根据勾股定理得:,
即,
解得:,
故选:B.
【点睛】
本题考查了直角三角形角的性质以及勾股定理,熟知直角三角形所对的直角边是斜边的一半是解题的关键.
8.D
解析:D
【分析】
根据两车相遇时甲、乙所走路程的比为2:3及两车相遇所用时间,即可求出A、B两地之间的距离;根据乙车的速度=相遇时乙车行驶的路程÷两车相遇所用时间,进而求出乙车的速度;根据甲车的速度=相遇时甲车行驶的路程÷两车相遇所用时间即可求出甲车的速度,然后根据时间=两地之间路程的一半÷甲车的速度,进而求出a值;根据时间=两地之间路程÷乙车的速度求出乙车到达终点所用时间,再求出该时间内甲车行驶的路程,用两地间的距离与甲车行驶的路程之差即可得出结论.
【详解】
解:A、A、B两地之间的距离为18×2÷=180(千米),所以A正确;
B、乙车的速度为180÷3=36(千米/小时),所以B正确;
C、甲车的速度为180=24(千米/小时),
a的值为180÷2÷24=3.75,所以C正确;
D、乙车到达终点的时间为180÷36=5(小时),
甲车行驶5小时的路程为24×5=120(千米),
当乙车到达终点时,甲车距离终点距离为180﹣120=60(千米),所以D错误.
故选:D
【点睛】
本题考查了一次函数的实际应用,结合函数的图象并逐一求出选项的内容判断正误是解题的关键
二、填空题
9.x≥﹣1且x≠2
【解析】
【分析】
根据分式的分母不为零、二次根式的被开方数为非负数求解可得答案.
【详解】
依题意,且,
解得且 ,
故答案为:且.
【点睛】
本题主要考查函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.掌握相关知识是解题的关键.
10.A
解析:cm2.
【解析】
【分析】
根据周长先求出边长,由菱形的对角线平分且垂直求出它的另一条对角线的长,再根据面积公式求得面积.
【详解】
解:如图:
∵菱形ABCD的周长等于8cm,
∴AB=8÷4=2cm,AC⊥BD,AO=CO,BO=DO,
∵AC=2,
∴AO=1,
∴BO=,
∴菱形的面积为2×2÷2=2cm2.
故答案为:cm2.
【点睛】
本题考查了菱形的四条边相等的性质,以及对角线互相垂直平分的性质,还考查了菱形面积的计算,对角线乘积的一半.
11.A
解析:13
【解析】
【分析】
根据题意画出圆柱的侧面展开图的平面图形,进而利用勾股定理得出答案.
【详解】
解:如图所示:
由题意可得:AD=5m,CD=12m,
则AC=(m),
故答案为:13.
【点睛】
本题主要考查了平面展开图的最短路径问题,正确画出平面图形是解题的关键.
12.A
解析:
【分析】
根据AC⊥BC,AB=5,AD=3,可以得到AC的长,再根据平行四边形的性质,可以得到DE和BE的长,然后根据勾股定理即可求得BD的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,
∵AC⊥BC,AB=5,AD=3,
∴∠ACB=90°,BC=3,
∴AC=4,
作DE⊥BC交BC的延长线于点E,
∵AC⊥BC,
∴AC∥DE,
又∵AD∥CE,
∴四边形ACED是矩形,
∴AC=DE,AD=CE,
∴DE=4,BE=6,
∵∠DEB=90°,
∴BD=,
故答案为:.
【点睛】
本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理.
13.﹣2<x<1
【分析】
把(1,1.5),(﹣2,0)代入y=kx+b解不等式即可得到结论.
【详解】
解:把(1,1.5),(﹣2,0)代入y=kx+b
得
解得:
∴直线l的解析式为y=x+1,
∵0<kx+b<1.5,
∴0<x+1<1.5,
解得:﹣2<x<1,
∴自变量x的取值范围为﹣2<x<1,
故答案为:﹣2<x<1.
【点睛】
本题主要考查了一次函数与一元一次不等式组,解题的关键在于能够准确求出一次函数的解析式.
14.A
解析:AB=AD.
【分析】
由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
【详解】
添加AB=AD,
∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AB=AD,
∴四边形ABCD是菱形,
故答案为AB=AD.
【点睛】
此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
15.【分析】
先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标
【详解】
当时,
四边形是正方形
当时,
四边形是
解析:
【分析】
先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标
【详解】
当时,
四边形是正方形
当时,
四边形是正方形
,
同理可得:;
……
点的坐标为
,
故答案为:①②
【点睛】
本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键.
16.60°
【分析】
(1)由翻折的性质得:∠1=∠2,∠3=∠4,∠C=∠2+∠3,∠D=∠AGE,∠B=∠AGF,再结合∵四边形内角和为360°,即可求出∠EAF=60°;
(2)由
解析:60°
【分析】
(1)由翻折的性质得:∠1=∠2,∠3=∠4,∠C=∠2+∠3,∠D=∠AGE,∠B=∠AGF,再结合∵四边形内角和为360°,即可求出∠EAF=60°;
(2)由边形AECF是菱形得AE=AF、S△AEF=S△CEF,由点G为EF中点,∠2=∠3=30°,设DE=x,勾股定理求出AD=x,由四边形纸片ABCD的面积3解出x,即可求得AB.
【详解】
解:(1)如图,由翻折的性质得:
∠1=∠2,∠3=∠4,∠C=∠2+∠3,∠D=∠AGE,∠B=∠AGF,
∵∠AGE+∠AGF=180°,
∴∠D=∠AGE=∠B=∠AGF=90°,
∵四边形内角和为360°,
∴∠1+∠2+∠3+∠4+∠C=180°,
∴3(∠2+∠3)=180°,
∴∠2+∠3=60°,
∴∠EAF=60°.
故答案为:60°;
(2)∵四边形AECF是菱形,
∴AE=AF,S△AEF=S△CEF,
∵点G为EF中点,
∴∠2=∠3=30°,
设DE=x,则AE=2x,
∴AD==x,
∴四边形纸片ABCD的面积是:3S△AEF=3××EF×AG=3××2x×x=3,
解得:x=1,
∴AB=.
故答案为:.
【点睛】
本题主要考查了翻折的性质、四边形内角和、菱形的性质,利用翻折性质:对应角相等、对应边相等是本题的关键.
三、解答题
17.(1);(2);(3);(4).
【分析】
(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;
(2)先化成最简二次根式,再合并即可;
(3)先化成最简二次根式,再计算乘法即可;
(4)根
解析:(1);(2);(3);(4).
【分析】
(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;
(2)先化成最简二次根式,再合并即可;
(3)先化成最简二次根式,再计算乘法即可;
(4)根据完全平方公式展开,再合并即可.
【详解】
解:(1)
;
(2)
;
(3)
;
(4)
.
【点睛】
本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.
18.船向岸边移动了9米.
【分析】
在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.
【详解】
解:在Rt△ABC中
解析:船向岸边移动了9米.
【分析】
在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.
【详解】
解:在Rt△ABC中:
∵∠CAB=90°,BC=17米,AC=8米,
∴AB==15(米),
∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,
∴CD=17-1×7=10(米),
∴AD==6(米),
∴BD=AB-AD=15-6=9(米),
答:船向岸边移动了9米.
【点睛】
本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
19.(1);(2).
【解析】
【分析】
(1)利用图形的割补法可得四边形的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;
(2)连,利用勾股定理分别求解,,,证明是直角三角形
解析:(1);(2).
【解析】
【分析】
(1)利用图形的割补法可得四边形的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;
(2)连,利用勾股定理分别求解,,,证明是直角三角形,从而可得答案.
【详解】
解:(1)
(2)连接,
∵,,
∴
∴是直角三角形,∴
【点睛】
本题考查的是勾股定理与勾股定理的逆定理的应用,利用割补法求网格多边形的面积,掌握勾股定理与勾股定理的逆定理是解题的关键.
20.(1)见解析;(2)见解析
【分析】
(1)根据边角边证明全等即可得出结论;
(2)同理可得,然后证明,即可得出,结论可得.
【详解】
解:(1)∵四边形是正方形,
∴,
,
在和中,
,
∴,
∴
解析:(1)见解析;(2)见解析
【分析】
(1)根据边角边证明全等即可得出结论;
(2)同理可得,然后证明,即可得出,结论可得.
【详解】
解:(1)∵四边形是正方形,
∴,
,
在和中,
,
∴,
∴.
(2)同理可得,
可得,
∵,
∴,即,
在和中,
,
∴,
∴,
∴,
∴四边形是菱形.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.
21.(1)9;(2)5.
【解析】
【详解】
试题分析:
(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得与分母相乘后,为平方差公式结构,如.
(2)先对a值进行化简得
解析:(1)9;(2)5.
【解析】
【详解】
试题分析:
(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得与分母相乘后,为平方差公式结构,如.
(2)先对a值进行化简得 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.
解:(1)原式=
(2)∵,
解法一:∵ ,
∴ ,即
∴原式=
解法二∴ 原式=
点睛:(1)把分母有理化的方法:分子分母同乘以分母的有理化因式, 得,去掉根号,实现分母有理化.
(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.
22.(1)(2)380天,55元
【分析】
(1)根据函数图像,待定系数法求解析式即可;
(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值
【详解】
(1)当时
解析:(1)(2)380天,55元
【分析】
(1)根据函数图像,待定系数法求解析式即可;
(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值
【详解】
(1)当时,设与的函数关系是为,有函数图像可知,函数图像经过点
解得
当时,设与的函数关系是为,有函数图像可知,函数图像经过点
解得
综上所述,
(2)设设需要天,该店能还清所有债务,根据题意,
当时,
当时,的最大值为
即,
当时,
当时,的最大值为
即,
综上所述,时,即最早需要天还清所有债务,此时服装定价为元
【点睛】
本题考查了一次函数的应用,二次函数的应用,掌握二次函数的性质是解题的关键.
23.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得
解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;
(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;
(3)方法1:先判断出最大时,的面积最大,进而求出,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出最大时,的面积最大,而最大是,即可得出结论.
【详解】
解:(1)点,是,的中点,
,,
点,是,的中点,
,,
,,
,
,
,
,
,
,
,
,
,
,
故答案为:,;
(2)是等腰直角三角形.
由旋转知,,
,,
,
,,
利用三角形的中位线得,,,
,
是等腰三角形,
同(1)的方法得,,
,
同(1)的方法得,,
,
,
,
,
,
,
是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,
最大时,的面积最大,
且在顶点上面,
最大,
连接,,
在中,,,
,
在中,,,
,
.
方法2:由(2)知,是等腰直角三角形,,
最大时,面积最大,
点在的延长线上,
,
,
.
【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.
24.(1)①P1,P3;②见解析;(2);(3)或.
【解析】
【分析】
(1)①根据“纵2倍直角距离”分别计算三个点到原点O的“纵2倍直角距离”,即可判断;
②根据“纵2倍直角距离”的定义得|x|+2
解析:(1)①P1,P3;②见解析;(2);(3)或.
【解析】
【分析】
(1)①根据“纵2倍直角距离”分别计算三个点到原点O的“纵2倍直角距离”,即可判断;
②根据“纵2倍直角距离”的定义得|x|+2|y|=3,根据y≥0,再分两种情况可得两个函数关系式,分别画出即可;
(2)作出与原点O的“纵2倍直角距离”等于3的点,通过观察作出图2可得:当直线y=2x+b与x轴的交点在对角线AC上(不含AC两点)时,恰好与四边形的边有两个公共点,由此即可求出b的取值范围;
(3)根据线段AB上存在点G的坐标求出当时,dGH=5所有满足条件的点H组成的图形,再结合图形的特征求出正方形CDEF与点H的满足“纵2倍直角距离”的点组成图形有公共点时t的取值范围.
【详解】
解:(1)①∵点点P1(1,1),P2(﹣4,0),P3(0,),
∴|1-0|+2|1-0|=3,||+2|0|=4,||+2||,
∴与原点O的“纵2倍直角距离”的点是P1,P3;
故答案为:P1,P3;
②设P(x,y),
∵点P与原点O的“纵2倍直角距离”dOP=3,
∴|x|+2|y|=3,
当y≥0,x≥0时,x+2y=3,即,
当y≥0,x≤0时,﹣x+2y=3,即,
如图1所示,
(2)如图,与原点O的“纵2倍直角距离”等于3的点组成图形是四边形ABCD, 直线y=2x+b经过A点或C点时,与四边形只有一个公共点,当直线y=2x+b与x轴交点在AC之间时,与菱形有两个公共点,
当直线,y=2x+b经过A点(-3,0)时;,解得:,
当直线,y=2x+b经过A点(3,0)时;,解得:,
∴b的取值范围为;
(3)设正方形CDEF上存在点H(x,y)
当线段AB上存在点G坐标为(1,1),则:dGH=,
当,时,,即,满足条件的图形为线段,
当,时,,即,满足条件的图形为线段,
当点G坐标从A(1,1)移动B(3,1)时对应满足条件的H点图形也平移2个单位到线段,线段,
∴满足点G的“纵2倍直角距离”的H点图形如图阴影部分所示:所有满足条件的H点是线段
其中:线段的解析式为,线段的解析式为,
由图可得:当正方形在线段下方时,D点在线段,正方形与满足条件的H点图形有公共点D(t,),
即:,解得,
同理求出当正方形在线段下方时,F点在线段,正方形与满足条件的H点图形有公共点D(t,),即,解得,
∴当,正方形与满足条件的H点图形由公共点存在,
同理可求:当,正方形与满足条件的H点图形由公共点存在,
综上所述:若线段AB上存在点G,正方形CDEF上存在点H,使得dGH=5,则或.
【点睛】
本题属于新定义与一次函数相结合的综合压轴题,读懂定义,紧扣定义解题,熟练掌握“纵2倍直角距离”的定义是解答此题的关键,根据G点的位置确定满足“纵2倍直角距离”的H点的范围是解(3)的难点.
25.(1)15,8;(2),见解析;(3);(4)4
【分析】
解决问题(1)只需运用面积法:,即可解决问题;
(2)解法同(1);
(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的
解析:(1)15,8;(2),见解析;(3);(4)4
【分析】
解决问题(1)只需运用面积法:,即可解决问题;
(2)解法同(1);
(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的面积,由的面积的面积的面积的面积,即可得出答案;
(4)过点作,垂足为,易证,过点作,垂足为,由解决问题(1)可得,易证,,只需求出即可.
【详解】
解:(1)∵,,,
∴的面积,
∵,,,
且,
∴,
∵,
∴.
故答案为:15,8.
(2)∵,,,
且,
∴,
∵,
∴.
(3)连接、、,作于,如图2所示:
∵,
∴是等边三角形,
∵,
∴,
∴,
∴的面积,
∵,,,
∴的面积的面积的面积的面积
,
∴.
(4)过点作,垂足为,如图3所示:
∵四边形是矩形,
∴,,
∵,,
∴,
由折叠可得:,,
∵,
∴,
∵,,
∴,
∴四边形是矩形,
∴,
∵,
∴,
∵,
∴,
∴,
由解决问题(1)可得:,
∴,即的值为4.
【点睛】
本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.
26.(1);(2);(3)
【分析】
(1)利用勾股定理即可求出.
(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.
(3)分
解析:(1);(2);(3)
【分析】
(1)利用勾股定理即可求出.
(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.
(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.
【详解】
(1)由勾股定理得:
(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,如图2所示:
则FM=AH,AM=FH
∵四边形CEFG是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°,
又∵四边形是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH
又∵∠EDC=∠FHE=90°,∴ ∴FH=ED EH=CD=3
∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2
∴MF=AH=1+3=4,MB=FH+CD=2+3=5
在Rt△BFM中,BF=
(3)分两种情况:
①当点E在边AD的左侧时,过点F作FM⊥BC交BC的反向延长线于点M,交DE于点N.如图3所示:
同(2)得:
∴EN=CD=3,FN=ED=7
∵AE=4∴AN=AE-EN=4-3=1
∴MB=AN=1 FM=FN+NM=7+3=10
在中
由勾股定理得:
②当点E在边AD的右侧时,过点F作FN⊥AD交AD的延长线于点N,交BC延长线于M,如图4所示:
同理得:
∴NF=DE=1,EN=CD=3
∴FM=3-1=2,CM=DN=DE+EN=1+3=4
∴BM=CB+CM=3+4=7
在中
由勾股定理得:
故BF的长为
【点睛】
本题为考查三角形全等和勾股定理的综合题,难点在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.
展开阅读全文