资源描述
人教版七年级数学下册期末复习题含答案经典
一、选择题
1.如图,直线,b被直线c所截,下列说法正确的是( )
A.∠2与∠3是同旁内角 B.∠1与∠4是同位角
C.与是同旁内角 D.∠1与∠2是内错角
2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )
A. B. C. D.
3.若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(3,4)
4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,点在的延长线上,能证明是( )
A. B.
C. D.
6.下列运算中:①;②;③;④,错误的个数有( )
A.1个 B.2个 C.3个 D.4个
7.如图,ABCD为一长方形纸片,AB∥CD,将ABCD沿E折叠,A、D两点分别与A′、D′对应,若∠CFE=2∠CFD′,则∠AEF的度数是( )
A.60° B.80° C.75° D.72°
8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.若|y+6|+(x﹣2)2=0,则y x=_____.
十、填空题
10.将点先关于x轴对称,再关于y轴对称的点的坐标为_______.
十一、填空题
11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2
十二、填空题
12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________.
十三、填空题
13.将一张长方形纸条折成如图的形状,已知,则___________°.
十四、填空题
14.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用表示的小数部分.若,其中x是整数,且,写出x﹣y的相反数_____.
十五、填空题
15.若点P(2-m,m+1)在x轴上,则P点坐标为_____.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.
十七、解答题
17.(1)已知,求x的值;
(2)计算:.
十八、解答题
18.已知,,求下列各式的值
;
十九、解答题
19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC.
证明:∵∠1+∠2=180°,∠2+∠AED=180°,
∴∠1=∠AED( ),
∴AC ( ),
∴∠D=∠DAF( ).
∵∠C=∠D,
∴∠DAF= (等量代换).
∴ADBC( ).
二十、解答题
20.如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一个单位长度.
(1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与点C是对应点),得到三角形,在图中画出三角形;
(2)直接写出三角形的面积为____________.
二十一、解答题
21.已知某正数的两个不同的平方根是和;的立方根为;是的整数部分.
求的平方根.
二十二、解答题
22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由.
二十三、解答题
23.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.
(1)当点H在线段EG上时,如图1
①当∠BEG=时,则∠HFG= .
②猜想并证明:∠BEG与∠HFG之间的数量关系.
(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.
二十四、解答题
24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可.
【详解】
解:A.∠2与∠3是同旁内角,故说法正确,符合题意;
B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意;
C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意;
D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意;
故选:A.
【点睛】
本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.
2.D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其形成过程,故此选项错误;
C、不能用平移变换来分析其形成过程,故此选项正确;
D、能用平移变换来分析其形成过程,故此选项错误;
故选:D.
【点睛】
本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
3.A
【分析】
根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.
【详解】
点P在x轴的下方,y轴的右方,
点P在第四象限,
又点P到x轴、y轴的距离分别是3和4,
点P的横坐标是4,纵坐标是-3,
即点P的坐标为,
故选:A.
【点睛】
本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4.C
【分析】
根据命题的定义分别对各语句进行判断.
【详解】
解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.D
【分析】
由题意根据平行线的判定定理对四个选项进行逐一分析即可.
【详解】
解:A. ,能证AD∥BC,故此选项错误;
B. ,不能证明,故此选项错误;
C. ,不能证明,故此选项错误;
D. ,能证明,故此选项正确.
故选:D.
【点睛】
本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角.
6.D
【分析】
对每个选项依次计算判断即可.
【详解】
①,故该项错误;
②无意义,故该项错误;
③,故该项错误;
④,故该项错误.
共4个错误的,
故选:D.
【点睛】
此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.
7.D
【分析】
先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.
【详解】
解:∵AB∥CD,
∴∠CFE=∠AEF,
又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,
∴∠DFE=∠EFD′=3∠CFD′,
∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,
∴∠CFD′=36°,
∴∠AEF=∠CFE=2∠CFD′=72°.
故选:D.
【点睛】
本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,观察发现,第2次跳动至点的坐标是,
第4次跳动至点的坐标是,
第6次跳动至点的坐标是,
第8次跳动至点的坐标是,
第次跳动至点的坐标是,
则第2020次跳动至点的坐标是,
故选:A.
【点睛】
本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
解析:36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
十、填空题
10.(1,-4)
【分析】
直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.
【详解】
设关于x轴对称的点为
则点的坐标为
解析:(1,-4)
【分析】
直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.
【详解】
设关于x轴对称的点为
则点的坐标为(-1,-4)
设点和点关于y轴对称
则的坐标为(1,-4)
故答案为:(1,-4)
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
十一、填空题
11.6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关
解析:6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关键.
十二、填空题
12.35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
解析:35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
十三、填空题
13.55
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,∵ABCD,
∴∠1=∠BAD=110°,
由折叠可得,∠2=∠BAD=×110°=55°,
故答案为:
解析:55
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,∵ABCD,
∴∠1=∠BAD=110°,
由折叠可得,∠2=∠BAD=×110°=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.【分析】
根据题意得方法,估算的大小,求出的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.
【详解】
解:∵
∴的整数部分是2
由题意可得的整数部分即,
则小数部分
则
∴x﹣y的相反
解析:
【分析】
根据题意得方法,估算的大小,求出的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.
【详解】
解:∵
∴的整数部分是2
由题意可得的整数部分即,
则小数部分
则
∴x﹣y的相反数为
故答案为.
【点睛】
本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分.
十五、填空题
15.(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.
【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标
解析:(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.
【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标为(3,0),
故答案为:(3,0)
【点睛】
本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
十六、填空题
16.(1,0)
【分析】
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.
【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G
解析:(1,0)
【分析】
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.
【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),
∴“凸”形ABCDEFGHP的周长为20,
2018÷20的余数为18,
∴细线另一端所在位置的点在P处,坐标为(1,0).
故答案为:(1,0).
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【
解析:(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【点睛】
本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.
十八、解答题
18.(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解
解析:(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键.
十九、解答题
19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,内错角相等),
,
(等量代换),
(同位角相等,两直线平行).
故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
二十、解答题
20.(1)见解析;(2)5
【分析】
(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;
(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积
解析:(1)见解析;(2)5
【分析】
(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;
(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)由题意得:.
【点睛】
本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法.
二十一、解答题
21.【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
解析:
【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
,
的平方根是.
【点睛】
本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键.
二十二、解答题
22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸
解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸片的面积为()2+()2=36(cm2),
所以大正方形的边长为6cm,
设截出的长方形的长为3b cm,宽为2b cm,
则6b2=30,
所以b=(取正值),
所以3b=3=>,
所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.
二十三、解答题
23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.
【详解】
解:(1)①∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°,
∵∠BEG=36°,
∴∠HFG=18°.
故答案为:18°.
②结论:2∠BEG+∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°.
(2)如图2中,结论:2∠BEG-∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°-∠HFG=180°,
∴2∠BEG-∠HFG=90°.
【点睛】
本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十四、解答题
24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文