收藏 分销(赏)

部编版八年级数学下册期末试卷专题练习(解析版).doc

上传人:快乐****生活 文档编号:1932562 上传时间:2024-05-11 格式:DOC 页数:26 大小:903.54KB
下载 相关 举报
部编版八年级数学下册期末试卷专题练习(解析版).doc_第1页
第1页 / 共26页
部编版八年级数学下册期末试卷专题练习(解析版).doc_第2页
第2页 / 共26页
部编版八年级数学下册期末试卷专题练习(解析版).doc_第3页
第3页 / 共26页
部编版八年级数学下册期末试卷专题练习(解析版).doc_第4页
第4页 / 共26页
部编版八年级数学下册期末试卷专题练习(解析版).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、部编版八年级数学下册期末试卷专题练习(解析版)一、选择题1若代数式有意义,则x的取值范围是( )ABCD2下列各组数不能作为直角三角形的三边长的是( )A8,15,17B7,12,15C5,12,13D7,24,253如图,在下列条件中,能判定四边形ABCD是平行四边形的是( )AAD/BC,AB=CDBAOB=COD,AOD=COBCOA=OC,OB=ODDAB=AD,CB=CD4某大学生的平时成绩分,期中成绩分,期末成绩分,若计算学期总评成绩的方法如下:平时成绩期中成绩期末成绩,则该学生的学期总评成绩是( )A分B分C分D分5如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC1,

2、CE3,H是AF的中点,那么CH的长是()ABCD26如图,菱形纸片ABCD,A=60,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则DEC等于()A60B65C75D807如图,在中,点分别是的中点,点是上一点,连接,若则的长度为()ABCD8如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AEECCB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm如果点P、Q同时从点A处开始运动,设运动时间为x(s),APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:AB5cm;cosAED ;当0x

3、5时,y;当x6时,APQ是等腰三角形;当7x11时,y其中正确的有()A2个B3个C4个D5个二、填空题9若式子成立,则a的取值范围是_10如图,菱形ABCD的周长为,对角线AC和BD相交于点O,ACBD=12,则AOBO=_,菱形ABCD的面积S=_11在中,则线段AC的长为_12如图,在RtABC中,ACB90,D、E、F分别为AB、AC、BC的中点,若CD5,则EF_13已知一次函数的图象经过,两点,则该一次函数解析式是_14如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N若DM2,CM3,则矩形的对角线AC的长为_15如图,直线与直线相交于点B,直线与y轴交于

4、点A,直线与x轴交于点D与y轴交于点C,交x轴于点E直线上有一点P(P在x轴上方)且,则点P的坐标为_16在RtACB中,ACB90,点D在边AB上,连接CD,将ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC3,BE1,则DE的长是_三、解答题17计算:(1)+(2)2+(2)0;(2)(2)2+618一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向19如图,每个小正方形的边长都是1,ABC的三个顶点分别在正方形网格的格点上(1)求AB,BC的长;(2)判断ABC的形状

5、,并说明理由20已知:如图,在中,是的平分线,求证:四边形是菱形 21阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一) ;(二) ;(三) .以上这种化简的方法叫分母有理化(1)请用不同的方法化简:参照(二)式化简_.参照(三)式化简_(2)化简:.22甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠优惠期间,设某游客的草莓采摘量

6、为x(x6)千克,在甲采摘园所需总费用为y1元,在乙采摘园所需总费用为y2元(1)求y1、y2关于x的函数解析式;(2)如果你是游客你会如何选择采摘园?23如图正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF(1)当t1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当ADF是等腰三角形时,求t的值24定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x,y,那么称点T是点A,B的三分点例如:

7、A(1,5),B(7,7),当点T(x,y)满足x2,y4时,则点T(2,4)是点A,B的三分点(1)已知点C(1,8),D(1,2),E(4,2),请说明其中一个点是另外两个点的三分点(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点试确定y与x的关系式若中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标若直线AT与线段MN有交点,直接写出t的取值范围25在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?

8、探究问题:(1)首先考察点的两个特殊位置:当点与点重合时,如图1所示,_当时,如图2所示,中的结论是否发生变化?直接写出你的结论:_;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中的结论在一般情况下_;(填“成立”或“不成立”)(3)证明猜想:若(1)中的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.【参考答案】一、选择题1A解析:A【分析】根据分式分母不为零和二次根式的非负性计算即可;【详解】代数式有意义,;故选A【点睛】本题主要考查了分式有意义的条件和二次根式有意义的条件,准确计算是解题的关键2B解

9、析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案【详解】解:A、82152172,符合勾股定理的逆定理,故此选项不符合题意;B、72122152,不符合勾股定理的逆定理,故此选项符合题意;C、52122132,符合勾股定理的逆定理,故此选项不符合题意;D、72242252,符合勾股定理的逆定理,故此选项不符合题意故选:B【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3C解析:C【解析】【分析】由平行四边形的判定

10、可求解【详解】A、由ADBC,AB=CD不能判定四边形ABCD为平行四边形;B、由AOB=COD,AOD=COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:有两组对边分别平行的四边形是平行四边形,有两组对边分别相等的四边形是平行四边形,有两组对角分别相等的四边形是平行四边形,有一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形4B解析:B【解析】【分析】根据题意和题目中的数据,利

11、用加权平均数的计算方法可以计算出该学生的学期总评成绩【详解】由题意可得, =86分,即该学生的学期总评成绩是86分,故选:B【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的方法解答5B解析:B【分析】连接AC、CF,如图,根据正方形的性质得ACD=45,FCG=45,AC=,CF=3,则ACF=90,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长【详解】连接AC、CF,如图,四边形ABCD和四边形CEFG都是正方形,ACD=45,FCG=45,AC=BC=,CF=CE=3,ACF=45+45=90,在RtACF中,AF=,H是AF的中点,CH=AF

12、= 故选B【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质两条对角线将正方形分成四个全等的等腰直角三角形也考查了直角三角形斜边上的中线性质及勾股定理6C解析:C【解析】【分析】连接BD,由菱形的性质及A=60,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到ADP=30,ADC=120,C=60,进而求出PDC=90,由折叠的性质得到CDE=PDE=45,利用三角形的内角和定理即可求出所求角的度数【详解】连接BD,四边形AB

13、CD为菱形,A=60,ABD为等边三角形,ADC=120,C=60,P为AB的中点,DP为ADB的平分线,即ADP=BDP=30,PDC=90,由折叠的性质得到CDE=PDE=45,在DEC中,DEC=180-(CDE+C)=75故选C【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键7C解析:C【解析】【分析】根据直角三角形的性质求出,进而求出,根据三角形中位线定理计算,得到答案【详解】解:,点是的中点,点、分别是、的中点,故选:C【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等

14、于第三边的一半是解题的关键8B解析:B【分析】根据图中相关信息即可判断出正确答案.【详解】解:图2知:当 时y恒为10,当 时,点Q运动恰好到点B停止,且当 时点P必在EC上, 故正确;当 时点P必在EC上,且当 时,y逐渐减小,当 时,点Q在点B处,点P在点C处,此时 设 则 在 中,由勾股定理得: 解得: 故正确;当 时,由 知点P在AE上,过点P作 如图: 故正确;当 时, 不是等腰三角形,故不正确;当时,点P在BC上,点Q和点B重合,故 不正确;故选B【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题9【解

15、析】【分析】根据二次根式有意义的条件,分式有意义的条件,即可求得【详解】或者解得:故答案为:【点睛】本题考查了二次根式的性质,分式的性质,理解被开方数为非负数是解题的关键10A解析: 1:2 4【解析】【分析】根据菱形性质得出ACBD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,即可求出AO:BO,根据勾股定理得出方程,求出x的值,求出AC、BD,根据菱形面积公式求出即可【详解】解:四边形ABCD是菱形,ACBD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,AC:BD=1:2,AO:BO=AC:(BD)=AC:BD=1:2;设AO=x,则BO

16、=2x,在RtAOB中,由勾股定理得:x2+(2x)2=()2,解得:x=1(负数舍去),即AO=1,BO=2,AC=2,BD=4,菱形ABCD的面积是S=ACBD=24=4,故答案为:1:2,4【点睛】本题考查了菱形的性质的应用,主要考查学生运用性质进行推理和计算的能力,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半11【解析】【分析】根据勾股定理即可得出答案【详解】解:,故答案为:【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c212C解析:5【分析】已知CD是RtABC斜边AB的中线,那么AB=2CD,

17、EF是ABC的中位线,则EF应等于AB的一半【详解】ABC是直角三角形,CD是斜边的中线,又EF是ABC的中位线,EF=10=5, 故答案为:5【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半,熟练掌握这些定理是解题关键13y=2x-4【分析】由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k0)然后将点的坐标代入解析式,故得2k+b=0,b=-4进而推导出函数解析式为y=2x-4【详解】解:设该一次函数的解析式为:y=kx+b(k0)由题意

18、得:,解得:,该一次函数的解析式为y=2x-4故答案为:y=2x-4【点睛】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键14A解析:【分析】连接AM,在RtADM中,利用勾股定理求出AD2,再在RtADC中,利用勾股定理求出AC即可【详解】解:如图,连接AM直线MN垂直平分AC,MAMC3,四边形ABCD是矩形,D90,DM2,MA3,AD2AM2DM232225,AC,故答案为:【点睛】本题考查线段垂直平分线的性质,矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型15(-3,4)【分析】先求出A(0,4),D(-1,

19、0),C(0,-2),得到AC=6,再求出B点坐标,从而求出ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即解析:(-3,4)【分析】先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可【详解】解:A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,A(0,4),D(-1,0),C(0,-2),AC=6;联立 ,解得,点B的坐标为(-2,2),可设直线AE的解析式为,直线AE的解析式为,E是直线AE与x轴的交点,点E坐标为(2,0),DE

20、=3,点P的坐标为(-3,4),故答案为:(-3,4)【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识16【分析】过点作于,于,由折叠的性质可得,由勾股定理可求,由面积法可求的长,由勾股定理可求的长【详解】解:如图,过点作于,于,将沿直线翻折,解析:【分析】过点作于,于,由折叠的性质可得,由勾股定理可求,由面积法可求的长,由勾股定理可求的长【详解】解:如图,过点作于,于,将沿直线翻折,故答案为:【点睛】本题考查了翻折变换,直角三角形的性质,角平分线的性质,勾股定理等知识,求出的长是本题的关键三、解答题17(

21、1)4;(2)【分析】(1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可;(2)根据二次根式的乘法运算计算即可;【详解】(1)原式;(2)原式;【点睛】本题主要考查了二次根解析:(1)4;(2)【分析】(1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可;(2)根据二次根式的乘法运算计算即可;【详解】(1)原式;(2)原式;【点睛】本题主要考查了二次根式的混合运算,结合负指数幂,零指数幂计算是解题的关键18第二艘船的航行方向为东北或西南方向【分析】根据路程=速度时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解【详解】解:如图,根据

22、题意,解析:第二艘船的航行方向为东北或西南方向【分析】根据路程=速度时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解【详解】解:如图,根据题意,得(千米),(千米),千米,第二艘船的航行方向为东北或西南方向【点睛】此题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形根据条件得出第二艘船的航行方向与第一艘船的航行方向成90是解题的关键19(1)AB2,BC,(2)ABC是直角三角形,见解析【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形

23、【详解】解:(1)解析:(1)AB2,BC,(2)ABC是直角三角形,见解析【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形【详解】解:(1)AB,BC,(2)AC5,AB2BC2AC2,ABC是直角三角形【点睛】此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理是解本题的关键20见解析【分析】根据四边形是平行四边形,再证明有一组邻边相等即可【详解】解:,四边形是平行四边形,平分,平行四边形是菱形【点睛】本题考查了解析:见解析【分析】根据四边形是平行四边形,再证明有一组邻边相等即可【详解】解:,四边形是平行四边形,平分,平行四边形是

24、菱形【点睛】本题考查了平行线的性质,菱形的判定,等腰三角形的判定,解题关键是熟练运用相关性质,准确进行推理证明21见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1);(2)原式故答案为:(1);解析:见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1);(2)原式故答案为:(1);【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22(1),;(2)当采摘量等于10千克

25、时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简解析:(1),;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令,求出对应x的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:,即关于x的函数解析式是关于x的函数解析式是;(2)当时,即:,解得,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当时,即:,解得,

26、即当采摘量超过10千克时,选择乙采摘园;当时,即:,解得,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键23(1) (2) (3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AHDHx,在RtAHD中,得出x2+x242,解方程解析:(1) (2) (3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,

27、过点D作射线AF的垂线,垂足为H,设AHDHx,在RtAHD中,得出x2+x242,解方程求出x即可得出答案;(3)分AFDF,AFAD,ADDF三种情况,由正方形的性质及直角三角形的性质可得出答案【详解】解:(1)当t1时,AE1,四边形AEFG是正方形,AGFGAE1,G90,BF,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,四边形AGFE是正方形,AEEF,AEF90,EAF45,DHAH,AHD90,ADH45EAF,AHDH,设AHDHx,在RtAHD中,AHD90,x2+x242,解得x12(舍去),x22,D、F两点之间的最小距离为2;(3)当AFDF时,由(2)知

28、,点F与点H重合,过H作HKAD于K,如图2,AHDH,HKAD,AK2,t2当AFAD4时,设AEEFx,在RtAEF中,AEF90,x2+x242,解得x12(舍去),x22,AE2,即t2当ADDF4时,点E与D重合,t4,综上所述,t为2或2或4【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题24(1)见解析;(2)y2x1;点B的坐标(,6)或(,);3t1【解析】【分析】(1)由“三分点”的定义可求解;(2)由“三分点”定义可得:,消去t即可求解;先求出点解析:(1)见解析;(2)y2x

29、1;点B的坐标(,6)或(,);3t1【解析】【分析】(1)由“三分点”的定义可求解;(2)由“三分点”定义可得:,消去t即可求解;先求出点M,点N的坐标,分两种情况:MN为一边或MN为对角线,利用平行四边形的性质可求解;(3)利用特殊位置,分别求出AT过点M和过点N时,t的值,即可求解【详解】(1),点D(1,2)是点C,点E的三分点;(2)点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点,y2x1;y2x1图象交y轴于点M,直线l交y轴于点N,点M(0,1),点N(0,3),当四边形MTBN是平行四边形时,BTMN,B(t,2t+3),T(,),t

30、,t,点B的坐标(,6);当四边形MTNB是平行四边形时,设BT与MN交于点P,则点P为BT与MN的中点,点P(0,1),B(t,2t+3),T(,),t+0,t,点B(,),综上所述:点B的坐标为(,6)或(,);(3)当直线AT过点M时,点A(3,0),点M(0,1),直线AM解析式为yx1,点T是直线AM上,1t3,当直线AT过点N时,点A(3,0),点M(0,3),直线AN解析式为yx+3,点T是直线AN上,+3,t1,直线AT与线段MN有交点,3t1【点睛】本题新定义考题,题目中给出一个新的概念,严格利用新的概念进行求解;但是,新定义问题实质上是课程内知识点的综合应用,比如本题考查了

31、消元法,平行四边形的性质和一次函数,本类题目一定要注意分类讨论,利用合适条件确定边界条件是解题的关键25(1)45;不变化;(2)成立;(3)详见解析.【解析】【分析】(1)根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2解析:(1)45;不变化;(2)成立;(3)详见解析.【解析】【分析】(1)根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EFBC,EGAB,证 得AEG=PEF.由ABC=EFB=EGB=90知GEF=GEP+PEF=90.继而得AEP=

32、AEG+GEP=PEF+GEP=90.从而得出APE=EAP=45.【详解】解(1)当点P与点B重合时,如图1-1所示:四边形ABCD是正方形,APE=45当BP=BC时,如图1-2所示,中的结论不发生变化;故答案为:45,不变化.(2) (2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立; (3)证明一:如图所示.过点作于点,于点.点在的垂直平分线上,.四边形为正方形,平分.,. 证明二:如图所示.过点作于点,延长交于点,连接.点在的垂直平分线上,.四边形为正方形,.,. 又,.又,.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服