资源描述
蚌埠市数学八年级上册期末试卷
一、选择题
1、下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、斑叶兰被列为国家二级保护植物,它的一粒种子约为0.00000052克,将0.00000052这个数用科学记数法表示为( )
A.5.2×107 B.0.52×10-8 C.5.2×10-6 D.5.2×10-7
3、下列运算正确的是( )
A.a4÷a=a4 B.a3×a4=a7
C.(﹣a2)3=﹣a5 D.3a2•5a2=15a2
4、若式子在实数范围内有意义,则x的取值可以是( )
A.﹣2 B.﹣1 C.0 D.1
5、下列从左到右的变形是因式分解的是( )
A. B.
C. D.
6、下列式子从左到右变形正确的是( )
A.=1 B. C. D.=a﹣b
7、如图,在和中,,,还需在添加一个条件才能使,则不能添加的条件是( )
A. B. C. D.
8、已知关于x的分式方程的解为非负数,则满足条件的所有正整数m的个数是( )
A.3 B.4 C.5 D.6
9、如图,,,则下列结论错误的是( )
A. B. C. D.
二、填空题
10、如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )
A.1个 B.2个 C.3个 D.4个
11、如果分式的值为0,那么x的取值为_______.
12、如图,点A在y轴上,是等腰三角形,,点B关于y轴的对称点的坐标为,则点A的坐标为__________.
13、若,则整式______.
14、计算:_____________.
15、如图,将等边折叠,使点B恰好落在AC边上的点D处,折痕为EF,O为折痕EF上的动点,若AD=2,AC=6,则的周长最小值为______.
16、过多边形的一个顶点可作7条对角线,则多边形的内角和为 ______________.
17、已知___________.
18、如图,,cm,cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且,当点P的运动时间为_________秒时,△ABC才能和△PQA全等.
三、解答题
19、分解因式
(1);
(2)a2(x-y)+16(y-x).
20、解分式方程:
21、如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.
22、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;
【拓展应用】
(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
23、某商场在六一儿童节来临之际购进A、B两种玩具共110个,购买A玩具与购买B玩具的总费用相同,且都为1500元.已知A玩具的单价是B玩具单价的1.2倍.
(1)求A、B两种玩具的单价各是多少?
(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?
24、材料:数学兴趣一小组的同学对完全平方公式进行研究:因,将左边展开得到,移项可得:.
数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数、,都存在,并进一步发现,两个非负数、的和一定存在着一个最小值.
根据材料,解答下列问题:
(1)__________(,);___________();
(2)求的最小值;
(3)已知,当为何值时,代数式有最小值,并求出这个最小值.
25、已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.
(1)连接AE、CD,如图1,求证:AE=CD;
(2)若N为CD中点,连接AN,如图2,求证:CE=2AN
(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)
一、选择题
1、D
【解析】D
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;
B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;
C.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;
D.既是中心对称图形,也是轴对称图形,故此选项符合题意;
故选:D.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
2、D
【解析】D
【分析】科学记数法的表示形式为 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:0.00000052用科学记数法表示为5.2×;
故选:D.
【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,解题的关键是确定a和n的值。
3、B
【解析】B
【分析】根据同底数幂的除法可判断A,根据同底数幂的乘法可判断B,根据积的乘方与幂的乘方运算可判断C,根据单项式乘以单项式可判断D,从而可得答案.
【详解】解: 故A不符合题意;
故B符合题意;
故C不符合题意;
故D不符合题意;
故选B.
【点睛】本题考查的是同底数幂的除法,同底数幂的乘法运算,积的乘方与幂的乘方运算,单项式乘以单项式,掌握以上基础运算是解本题的关键.
4、C
【解析】C
【分析】根据0指数幂的性质得x-1≠0,根据分式的性质和二次根式的性质可得x+1>0,由此可求出x的范围.然后在四个选项中选出符合条件的选项即可.
【详解】根据0指数的性质得x-1≠0,
则x≠1,
根据分式的性质和二次根式的性质可得x+1>0,
∴x>-1.,
∴x的取值范围是:x>-1且x≠1,
四个选项中只有C选项符合条件.
故选C.
【点睛】本题考查了0指数幂的底数不能为0,二次根式的被开方数为非负数,分式的分母不能为0,掌握以上知识是解题的关键.
5、A
【解析】A
【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】解:A.把一个多项式转化成几个整式积的形式,故此选项符合题意;
B.没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
C.等号左侧不是多项式,不是因式分解,故此选项不符合题意;
D.从左到右的变形是整式的运算,不是因式分解,故此选项不符合题意;
故选:A.
【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解的意义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
6、D
【解析】D
【分析】根据分式的基本性质求解判断即可.
【详解】解:A、,变形错误,不符合题意;
B、,变形错误,不符合题意;
C、,变形错误,不符合题意;
D、,变形正确,符合题意;
故选D.
【点睛】本题主要考查了分式的基本性质,熟知分式的基本性质是解题的关键.
7、D
【解析】D
【分析】根据全等三角形的判定定理依次分析可得答案.
【详解】解:,
,
即,
∵在与中,,,
若,则可依据证明,故A选项不符合题意;
若,则可依据证明,故B选项不符合题意;
若,则可依据证明,故C选项不符合题意;
若,则不能证明,故D选项符合题意.
故选:D.
【点睛】本题主要考查全等三角形的判定定理,熟记全等三角形的判定定理:,,, ,,并熟练应用解决问题是解题的关键.
8、B
【解析】B
【分析】方程两边同乘最简公分母将分式方程化为整式方程解得x=;再根据分式方程的解为非负数,列出不等式组,解得m≤5且m≠3,即可求出满足条件的所有正整数m.
【详解】解:由2﹣,
得2(x﹣1)+m=3,
解得x=,
∵分式方程的解为非负数,
∴≥0,
∵x﹣1≠0,
即≠1,
∴,
解得m≤5且m≠3,
∴满足条件的所有正整数m为1,2,4,5,共4个.
故选:B.
【点睛】此题考查了分式方程的解和不等式组的解,解题的关键是分式方程化成整式方程,根据条件列出不等式组求解.
9、C
【解析】C
【分析】先证明可判断A,结合平行线的性质可判断B,再利用三角形的外角的性质可判断C,结合邻补角的定义可判断D,从而可得答案.
【详解】解:∵,
∴ 故A不符合题意;
∵,
故B不符合题意;
故C符合题意;
故D不符合题意;
故选C
【点睛】本题考查的是平行线的判定与性质,三角形的外角的性质,证明是解本题的关键.
二、填空题
10、C
【解析】C
【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,
故选C.
【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
11、
【分析】根据分式的分子为0,分母不为0,可得答案.
【详解】分式的值为0,
,且,
,
故答案为:.
【点睛】本题考查了分式为0条件,分式的分子为0,分母不为0是解题的关键.
12、B
【解析】(0,6)
【分析】过B作BC⊥AO于C,由点B关于y轴的对称点的坐标为得出点B的坐标,依据等腰三角形的性质即可得到AC=OC=3,最后求得点A的坐标.
【详解】解:如图所示,过B作BC⊥AO于C,
∵点B关于y轴的对称点的坐标为,
∴B,
∵AB=OB,BC⊥AO,
∴AC=OC=3,
∴点A的坐标为(0,6),
故答案为:(0,6).
【点睛】本题主要考查了等腰三角形的性质,解决问题的关键是掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.
13、
【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等确定出即可.
【详解】解:已知等式整理得:,
,
,
解得:.
故答案为:.
【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
14、##-1.5
【分析】先根据同底数幂乘法的逆用将改写成,再根据积的乘方的逆用即可得.
【详解】解:原式,
,
,
,
,
故答案为:.
【点睛】本题考查了同底数幂乘法的逆用、积的乘方的逆用,熟练掌握各运算法则是解题关键.
15、10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴
【解析】10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴OB=OD,
∵△ABC是等边三角形,AD=2,AC=6,
∴AC=BC=6,CD=AC-AD=6-2=4,
∴的周长=CD+OC+OD=4+OC+OB,
∴当点B、O、C共线时,的周长最小,最小值为4+BC=4+6=10,
故答案为:9、
.
【点睛】此题考查了轴对称的性质,三角形周长最小值,正确理解轴对称的性质及三点共线的性质是解题的关键.
16、##1440度
【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=7,求出n的值,最后根据多边形内角和公式可得结论.
【详解】解:由题意得:n-3=7,解得n=10,则该n边
【解析】##1440度
【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=7,求出n的值,最后根据多边形内角和公式可得结论.
【详解】解:由题意得:n-3=7,解得n=10,则该n边形的内角和是:(10-2)×180°=1440°,
故答案为:1440°.
【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.
17、20
【分析】利用完全平方公式展开,发现,代入数值计算即可.
【详解】∵,
∴
故答案为:19、
【点睛】本题主要考查了完全平方公式,熟悉完全平方公式及其一些常见变形是解题的关键.
【解析】20
【分析】利用完全平方公式展开,发现,代入数值计算即可.
【详解】∵,
∴
故答案为:19、
【点睛】本题主要考查了完全平方公式,熟悉完全平方公式及其一些常见变形是解题的关键.
18、2或4##4或2
【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.
【详解】解:设点P的运动时间为t秒,
∵,,
∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),
【解析】2或4##4或2
【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.
【详解】解:设点P的运动时间为t秒,
∵,,
∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),
∴t=4÷2=2秒;
当AP=AC=8cm,时,Rt△PQA≌Rt△ABC(HL),
∴t=8÷2=4秒,
综上,当点P的运动时间为2或4秒时,△ABC才能和△PQA全等.
故答案为:2或3、
【点睛】本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键.
三、解答题
19、(1)
(2)(x﹣y)(a+4)(a﹣4)
【分析】(1)直接利用公式法分解因式即可;
(2)先提提取公因式,然后运用公式法分解因式即可.
(1)解: =;
(2)a2(x﹣y)+16(y﹣x)=
【解析】(1)
(2)(x﹣y)(a+4)(a﹣4)
【分析】(1)直接利用公式法分解因式即可;
(2)先提提取公因式,然后运用公式法分解因式即可.
(1)解: =;
(2)a2(x﹣y)+16(y﹣x)=a2(x﹣y)-16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).
【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.
20、【分析】先去分母得到,再去括号,移项合并同类项得到,再系数化为1即可得到答案.
【详解】
去分母得到,
去括号得到,
移项合并同类项得到,
系数化为1可得,
经检验是原方程的解,
故原方程的解为:
【解析】
【分析】先去分母得到,再去括号,移项合并同类项得到,再系数化为1即可得到答案.
【详解】
去分母得到,
去括号得到,
移项合并同类项得到,
系数化为1可得,
经检验是原方程的解,
故原方程的解为:.
【点睛】本题考查解分式方程,解题的关键是掌握解分式方程的基本步骤.
21、见解析
【分析】只需证明△ACB与△DBC全等即可.
【详解】证明:∵AC⊥CB,DB⊥CB,
∴△ACB与△DBC均为直角三角形,
在Rt△ACB与Rt△DBC中,
,
∴Rt△ACB≌Rt△DB
【解析】见解析
【分析】只需证明△ACB与△DBC全等即可.
【详解】证明:∵AC⊥CB,DB⊥CB,
∴△ACB与△DBC均为直角三角形,
在Rt△ACB与Rt△DBC中,
,
∴Rt△ACB≌Rt△DBC(HL),
∴∠A=∠D,
【点睛】本题考查全等全角三角形的判定与性质,是基础题.注意本题是对两个直角三角形全等的判定,熟悉“HL”定理是解答的关键.
22、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
【分析】(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,
【解析】(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
【分析】(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
(2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
【详解】(1)证明:∵∠ACD是△ABC的外角
∴∠ACD=∠A+∠ABC
∵CE平分∠ACD
∴
又∵∠ECD=∠E+∠EBC
∴
∵BE平分∠ABC
∴
∴
∴;
(2)①∵∠ACD=130°,∠BCD=50°
∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
∵∠CBA=40°
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
∵AD平分∠BAC
∴
∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
②∠CAD+41°=∠CBD
设∠CBD=α
∵∠ABD+∠CBD=180°
∴∠ABC=180°﹣2α
∵∠ACB=82°
∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
∵AD平分∠BAC
∴∠CAD=∠CAB=α﹣41°
∴∠CAD+41°=∠CBD.
【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
23、(1)A种玩具单价为30元/个,B种玩具单价为25元/个
(2)A种玩具最多能购进100个
【分析】(1)首先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,然后根据题意,列出方程,解出即
【解析】(1)A种玩具单价为30元/个,B种玩具单价为25元/个
(2)A种玩具最多能购进100个
【分析】(1)首先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,然后根据题意,列出方程,解出即可得出答案;
(2)首先设购进种玩具个,则购进B种玩具个,然后根据题意和(1)中A、B两种玩具的单价,列出不等式,解出即可得出答案.
(1)
解:设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意,
∴,
答:A种玩具单价为30元/个,B种玩具单价为25元/个.
(2)
解:设购进种玩具个,则购进B种玩具个,
依题意得:,
解得:,
答:A种玩具最多能购进100个.
【点睛】本题考查了分式方程的实际应用和不等式的实际应用,解本题的关键在理解题意列出方程或不等式.
24、(1),2;(2);(3)当时,代数式的最小值为2019.
【分析】(1)根据阅读材料即可得出结论;
(2)根据阅读材料介绍的方法即可得出结论;
(3)把已知代数式变为,再利用阅读材料介绍的方法,即
【解析】(1),2;(2);(3)当时,代数式的最小值为2019.
【分析】(1)根据阅读材料即可得出结论;
(2)根据阅读材料介绍的方法即可得出结论;
(3)把已知代数式变为,再利用阅读材料介绍的方法,即可得到结论.
【详解】(1)∵,,
∴,
∵,
∴;
(2)当x时,,均为正数,
∴
所以,的最小值为.
(3)当x时,,,2x-6均为正数,
∴
由可知,当且仅当时,取最小值,
∴当,即时,有最小值.
∵x
故当时,代数式的最小值为2018、
【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.
25、(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而
【解析】(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;
(3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论.
(1)
解:∵△ABD和△BCE是等边三角形,
∴BD=AB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
∴∠DBC=∠ABE,
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)
解:如图,延长AN使NF=AN,连接FC,
∵N为CD中点,
∴DN=CN,
∵∠AND=∠FNC,
∴△ADN≌△FCN(SAS),
∴CF=AD,∠NCF=∠AND,
∵∠DAB=∠BAC=60°
∴∠ACD +∠ADN=60°
∴∠ACF=∠ACD+∠NCF=60°,
∴∠BAC=∠ACF,
∵△ABD是等边三角形,
∴AB=AD,
∴AB=CF,
∵AC=CA,
∴△ABC≌△CFA (SAS),
∴BC=AF,
∵△BCE是等边三角形,
∴CE=BC=AF=2AN;
(3)
解: ∵△ABD是等边三角形,
∴,∠BAD=60°,
在Rt△ABC中,∠ACB=90°-∠BAC=30°,
∴,
如图,过点E作EH // AD交AM的延长线于H,
∴∠H=∠BAD=60°,
∵△BCE是等边三角形,
∴BC=BE,∠CBE=60°,
∵∠ABC=90°,
∴∠EBH=90°-∠CBE=30°=∠ACB,
∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,
∴△ABC≌△HEB (ASA),
∴,,
∴AD=EH,
∵∠AMD=∠HME,
∴△ADM≌△HEM (AAS),
∴AM=HM,
∴
∵,,
∴.
故答案为:.
【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
展开阅读全文