收藏 分销(赏)

廊坊市数学八年级上册期末试卷[002].doc

上传人:天**** 文档编号:4741450 上传时间:2024-10-11 格式:DOC 页数:19 大小:1.22MB
下载 相关 举报
廊坊市数学八年级上册期末试卷[002].doc_第1页
第1页 / 共19页
廊坊市数学八年级上册期末试卷[002].doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述
廊坊市数学八年级上册期末试卷 一、选择题 1、下列图形中,不是轴对称图形的是(   ) A. B. C. D. 2、某公司运用5G技术,下载一个2.4M的文件大约只需要0.000048秒,则0.000048用科学记数法表示为(   ) A. B. C. D. 3、下列各式中,计算结果是x8的是(  ) A.x4+x4 B.x16÷x2 C.x4•x4 D.(﹣2x4)2 4、有这样一道题“先化简,再从﹣2,﹣1,0,1四个数中选择一个你认为合适的数作为x的值代入求值.”这道题中x应取的值为(  ) A.﹣2 B.﹣1 C.0 D.1 5、下列各式从左到右的变形,是因式分解的是(       ) A. B. C. D. 6、下列分式从左到右的变形正确的是(       ) A. B. C. D. 7、如图,ABDE,,若添加下列条件,仍不能判断≌的是(       ) A. B. C. D. 8、关于x的分式方程的解为正数,则实数m的取值范围是(       ) A. B. C.且 D.且 9、如图,在△ABC中,AB=AC=CD,∠B=40°,则∠BAD=(  ) A.20° B.30° C.35° D.40° 二、填空题 10、如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DEAC交AB于点E,若AB=8,则DE的长度是(       ) A.6 B.2 C.3 D.4 11、当x=___时,分式的值为0. 12、在平面直角坐标系中,点A(4,-3)关于x轴的对称点的坐标是______. 13、已知=1,则(a﹣1)(b+1)=_____. 14、计算:=_____. 15、如图,在中,的平分线与的垂直平分线相交于点O,沿折叠,点C与点O恰好重合.则___________. 16、如图的平面图形由多条线段首尾相连构成,已知∠A=90°,则∠D+∠E+∠F+∠G=_____. 17、若,则______. 18、如图,正方形ABCD的边长为2,延长BC到点E,使,连接DE.动点P从点A出发,以每秒1个单位的速度沿向终点D运动,设点P的运动时间为t秒,当与全等时,t的值为______秒. 三、解答题 19、分解因式: (1) (2)16-8(x-y)+(x-y)2 20、解方程:. 21、如图,已知,AB=AD,BC=CD. (1)求证:△ABC≌△ADC; (2)若∠1=30°,∠2=50°,求∠D的度数. 22、已知:. (1)如图1,求证:; (2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论. 23、一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地. (1)原计划的行驶速度是多少? (2)这辆汽车实际花费多长时间到达了目的地. 24、把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a2+6a+8, 解:原式=a2+6a+8+1-1=a2+6a+9-1 =(a+3)2-12= ②M=a2-2a-1,利用配方法求M的最小值. 解: ∵(a-b)2≥0,∴当a=1时,M有最小值-1、 请根据上述材料解决下列问题: (1)用配方法因式分解:. (2)若,求M的最小值. (3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值. 25、如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE. (1)如图1,若点P与点C重合,求∠ABE的度数; (2)如图2,若P在C点上方,求证:PD+AC=CE; (3)若AC=6,CE=2,则PD的值为   (直接写出结果). 一、选择题 1、A 【解析】A 【分析】根据轴对称图形的性质逐一判断即可. 【详解】解:A、不是轴对称图形,故本选项符合题意; B、是轴对称图形,故本选项不符合题意; C、是轴对称图形,故本选项不符合题意; D、是轴对称图形,故本选项不符合题意. 故选:A 【点睛】本题考查轴对称图形,能准确识别轴对称图形是解题的关键. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000048=4.8×10-5, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】利用合并同类项的法则,同底数幂的除法的法则,积的乘方的法则,同底数幂的乘法的法则对各项进行运算即可. 【详解】解:A、x4+x4=2x4,故A不符合题意; B、x16÷x2=x14,故B不符合题意; C、x4•x4=x8,故C符合题意; D、(﹣2x4)2=4x8,故D不符合题意; 故选:C. 【点睛】本题主要考查积的乘方,同底数幂的乘法,合并同类项,同底数幂的除法,解答的关键是对相应的运算法则的掌握. 4、A 【解析】A 【分析】根据分式有意义的条件,即可求解. 【详解】解:根据题意得:, ∴x不能取-1,0,1, ∴x应取-1、 故选:A 【点睛】本题主要考查了分式的化简求值,熟练掌握分式有意义的条件是解题的关键. 5、B 【解析】B 【分析】根据因式分解的定义判断是否分解成几个因式的乘积即可求解. 【详解】解:A、是整式的计算,故该选项不符合题意; B. ,是因式分解,故正确; C、,含有加法,不是因式分解,故该选项不符合题意;        D、,含有分式,故该选项不符合题意; 故选:B. 【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义. 6、C 【解析】C 【分析】根据分式的性质可得到A、B、D都不一定正确,而C中k≠0,根据分式的基本性质可判断其正确. 【详解】解:A、(m≠0),所以A选项不正确,不符合题意; B、若c=0,则,所以B选项不正确,不符合题意; C、,所以C选项正确,符合题意; D、,所以D选项不正确,不符合题意. 故选:C. 【点睛】本题考查了分式的基本性质:分式的分子和分母同乘以(或除以)一个不为0的代数式,分式的值不变. 7、A 【解析】A 【分析】根据全等三角形的判断方法一一判断即可. 【详解】解:A.缺少全等的条件,本选项符合题意; B.∵ABDE, ∴∠B=∠E ∵ ∴ ∴ ∵ ∴≌(SAS) 故本选项不符合题意; C.∵ABDE, ∴∠B=∠E ∵, ∴≌(ASA) 故本选项不符合题意; D.∵ABDE, ∴∠B=∠E,∠ACB=∠DFE ∵ ∴≌(AAS) 故本选项不符合题意. 故选:A. 【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型. 8、D 【解析】D 【分析】先根据分式方程的解法,求出x的解,然后根据分式方程有解,且解为正数构成不等式组求解即可. 【详解】解:, 去分母得:x+m-2m=3(x-2), 解得:x=, ∵关于x的分式方程的解为正数, ∴. 即, 解得m<6且m≠2, 故选:D. 【点睛】本题考查了分式方程的解和分式方程有解的条件,用含m的式子表示分式方程中x的解,构造不等式组是解题的关键. 9、B 【解析】B 【分析】根据等腰三角形的性质可得,则有,进而根据三角形外角的性质可进行求解. 【详解】解:∵AB=AC,∠B=40°, ∴, ∵AC=CD, ∴, ∴; 故选B. 【点睛】本题主要考查等腰三角形的性质、三角形内角和及外角的性质,熟练掌握等腰三角形的性质、三角形内角和及外角的性质是解题的关键. 二、填空题 10、D 【解析】D 【分析】分别延长AC、BD交于点F,根据角平分线的性质得到∠BAD=∠FAD,证明△BAD≌△FAD,根据全等三角形的性质得到BD=DF,根据平行线的性质得到BE=ED,EA=ED,进一步计算即可求解. 【详解】解:分别延长AC、BD交于点F, ∵AD平分∠BAC,AD⊥BD, ∴∠BAD=∠FAD,∠ADB=∠ADF=90°, 在△BAD和△FAD中,, ∴△BAD≌△FAD(ASA), ∴∠ABD=∠F, ∵DEAC, ∴∠EDB=∠F,∠EDA=∠FAD, ∴∠ABD=∠EDB,∠EDA=∠EAD, ∴BE=ED,EA=ED, ∴BE=EA=ED, ∴DE=AB=×8=4, 故选:D. 【点睛】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定和性质是解题的关键. 11、 【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知4x+3=0,由此求解即可. 【详解】解:∵分式的值为0, ∴, 解得, 故答案为:. 【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题. 12、A 【解析】(4,3) 【分析】根据坐标系中,关于x轴对称的点横坐标不变,纵坐标互为相反数的特点解答即可. 【详解】解:A点(4,-3)关于x轴对称的点的坐标是(4,3) 故答案为(4,3) 【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变. 13、﹣1 【分析】根据分式的加减混合运算法则把已知式子变形,根据多项式乘多项式的运算法则把所求的式子化简,代入计算即可. 【详解】解:∵=1, ∴b﹣a=ab, 则(a﹣1)(b+1) =ab﹣b+a﹣1 =ab﹣(b﹣a)﹣1 =﹣1, 故答案为:﹣1. 【点睛】本题考查的是分式的加减、多项式乘多项式,掌握分式的加减混合运算法则是解题的关键. 14、## 【分析】根据积的乘方运算,同底数幂的乘法的逆运算化简,进而即可求解. 【详解】解:原式=(2﹣)2021×(2+)2021×(2﹣) =[(2﹣)×(2+)]2021×(2﹣) =1×(2﹣) =2﹣ 故答案为:2﹣. 【点睛】此题主要考查了二次根式的混合运算,正确将原式变形是解题关键. 15、##52度 【分析】连接OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BA 【解析】##52度 【分析】连接OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后证△AOB≌△AOC(SAS),得出OB=OC,∠OCB=∠OBC,再根据等边对等角求出∠OCB=∠OBC,根据折叠的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得∠OEC,即可求解. 【详解】解:如图,连接OC, ∵∠BAC=52°,AO为∠BAC的平分线, ∴∠BAO=∠BAC=×52°=26°, 又∵AB=AC, ∴∠ABC=(180°-∠BAC)=(180°-52°)=64°, ∵点O在AB的垂直平分线, ∴OA=OB, ∴∠ABO=∠BAO=26°, ∴∠OBC=∠ABC-∠ABO=64°-26°=38°, ∵AO为∠BAC的平分线, ∴∠BAO=∠CAO, ∵AB=AC,AO=AO, ∴△AOB≌△AOC(SAS), ∴OB=OC, ∴∠OCB=∠OBC=38°, ∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合, ∴OE=CE,∠OEF=∠CEF, ∴∠COE=∠OCB=38°, 在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-38°-38°=104°, ∴∠OEF=∠OEC=52°, 故答案为:52°. 【点睛】本题考查了翻折变换的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键. 16、270°##270度 【分析】连接EF,在△AEF中,根据三角形内角和是180°得到∠AFE+∠AEF=180°-∠A=180°-90°=90°,在四边形DEFG中,根据四边形内角和是360°得到∠ 【解析】270°##270度 【分析】连接EF,在△AEF中,根据三角形内角和是180°得到∠AFE+∠AEF=180°-∠A=180°-90°=90°,在四边形DEFG中,根据四边形内角和是360°得到∠D+∠DEF+∠EFG+∠G=360°即可得出答案. 【详解】解:如图,连接EF, 在△AEF中,∠AFE+∠AEF=180°-∠A=180°-90°=90°, 在四边形DEFG中,∠D+∠DEF+∠EFG+∠G=360°, ∴∠D+∠DEB+∠AFG+∠G=360°-(∠AFE+∠AEF)=360°-90°=270°, 故答案为:270°. 【点睛】本题考查了多边形的内角和问题,三角形内角和定理,连接EF,构造三角形和四边形是解题的关键. 17、【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为. 【详解】解:, , , , 把代入得:原式, 故答案为. 【点睛】. 本题主要考查知识点为:分式的加减,完全平方公 【解析】 【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为. 【详解】解:, , , , 把代入得:原式, 故答案为. 【点睛】. 本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键. 18、1或5##5或1 【分析】分三种情况进行讨论,当P在AB边上时,当P在CD边上时,当P在BC边上时,求解即可. 【详解】解:当P在AB边上时, 在△DAP与△DCE中,△DAP≌△DCE, ∴AP= 【解析】1或5##5或1 【分析】分三种情况进行讨论,当P在AB边上时,当P在CD边上时,当P在BC边上时,求解即可. 【详解】解:当P在AB边上时, 在△DAP与△DCE中,△DAP≌△DCE, ∴AP=CE, 由题意得:AP=t=1, 所以t=1, 当P在CD边上时, 在△ABP与△DCE中,△ADP≌△DCE, ∴DP=CE, 由题意得:DP=2×3-t-=1, 解得t=4、 当P在BC边上时,不满足条件. 所以,当t的值为1或5秒时.△ADP和△DCE全等. 故答案为:1或4、 【点睛】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答. 三、解答题 19、(1) (2) 【分析】(1)先提公因式x,再利用完全平方公式分解因式; (2)根据完全平方公式分解即可. (1) 解:原式=                       = (2) 解:原式=. 【解析】(1) (2) 【分析】(1)先提公因式x,再利用完全平方公式分解因式; (2)根据完全平方公式分解即可. (1) 解:原式=                       = (2) 解:原式=. 【点睛】此题考查了因式分解:将一个多项式写成几个整式的积的形式,叫将多项式分解因式,熟记因式分解的定义并掌握因式分解的方法是解题的关键. 20、分式方程无解 【分析】先去分母化为整式方程,解整式方程并检验即可. 【详解】解:去分母得:, 解得:, 经检验是增根, ∴分式方程无解. 【点睛】此题考查了解分式方程,正确掌握解分式方程的步骤及法则 【解析】分式方程无解 【分析】先去分母化为整式方程,解整式方程并检验即可. 【详解】解:去分母得:, 解得:, 经检验是增根, ∴分式方程无解. 【点睛】此题考查了解分式方程,正确掌握解分式方程的步骤及法则是解题的关键. 21、(1)见解析 (2)100° 【分析】(1)利用SSS即可证明△ABC≌△ADC; (2)首先利用三角形内角和定理得出∠B的度数,再根据全等三角形的性质可得答案. (1) 证明:在△ABC和△ADC 【解析】(1)见解析 (2)100° 【分析】(1)利用SSS即可证明△ABC≌△ADC; (2)首先利用三角形内角和定理得出∠B的度数,再根据全等三角形的性质可得答案. (1) 证明:在△ABC和△ADC中, , ∴△ABC≌△ADC(SSS); (2) 解:∵∠1=30°,∠2=50°, ∴∠B=180°﹣∠1﹣∠2=180°﹣30°﹣50°=100°, ∵△ABC≌△ADC, ∴∠D=∠B=100°, 答:∠D的度数为100°. 【点睛】本题考查全等三角形,灵活运用全等三角形的判断和性质是解题的关键. 22、(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠ 【解析】(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论; (2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论. (1) 解:如图1,过F作FH∥AB, ∵AB∥CD, ∴FH∥CD, ∴∠1=∠2,∠3=∠FDC, ∵∠2=∠ABE, ∴∠1=ABE, ∵∠BFC=∠1+∠3, ∴∠BFC=∠ABE+∠FCD, ∵∠ABE=∠BFC, ∴∠AEB=∠ABE+∠DCF; (2) 解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=, ∵∠BCF=2∠ABE, ∴,即, 由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=, ∴2(∠BMC+∠E)=2()=6, ∵3∠CAB=3(∠E+∠ABE)=3()=6, ∴2(∠BMC+∠AEB)=3∠CAB. 【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质. 23、(1)原计划的行驶速度是60km/h (2)实际花费2小时20分钟到达了目的地 【分析】(1)本题设原计划的行驶速度为x km/h,根据题意列出分式方程即可; (2)根据行驶时间=路程÷速度-提前时 【解析】(1)原计划的行驶速度是60km/h (2)实际花费2小时20分钟到达了目的地 【分析】(1)本题设原计划的行驶速度为x km/h,根据题意列出分式方程即可; (2)根据行驶时间=路程÷速度-提前时间列式即可得出结论. (1)解:设原计划的行驶速度是xkm/h,依题意可列方程为解得:x=60 经检验,是原方程的根, 所以原计划的行驶速度是60km/h; (2)解:,即实际花费2小时20分钟到达了目的地. 【点睛】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系:时间=路程÷速度列出分式方程;(2)根据数量关系行驶时间=路程÷速度-提前时间列式计算. 24、(1);(2);(3)3、 【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可; (2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可; (3)先利用 【解析】(1);(2);(3)3、 【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可; (2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可; (3)先利用配方法进行因式分解,再利用偶次方的非负性求出x、y、z的值,然后代入求解即可. 【详解】(1)原式 ; (2) 当时,有最小值; (3) 解得 则. 【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键. 25、(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; 【解析】(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论; (3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可. 【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线, ∴PA=PB, ∴∠PAB=∠PBA=30°, ∴∠BPE=∠PAB+∠PBA=60°, ∵PB=PE, ∴△BPE为等边三角形, ∴∠CBE=60°, ∴∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G, ∵CD垂直平分AB, ∴CA=CB, ∵∠BAC=30°, ∴∠ACD=∠BCD=60°, ∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°, ∴∠GPC=∠HPC=30°, ∴PG=PH,CG=CH=CP,CD=AC, 在Rt△PGB和Rt△PHE中, , ∴Rt△PGB≌Rt△PHE(HL). ∴BG=EH,即CB+CG=CE-CH, ∴CB+CP=CE-CP,即CB+CP=CE, 又∵CB=AC, ∴CP=PD-CD=PD-AC, ∴PD+AC=CE; (3)①当P在C点上方时,由(2)得:PD=CE-AC, 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ②当P在线段CD上时, 如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G, 此时Rt△PGB≌Rt△PHE(HL), ∴BG=EH,即CB-CG=CE+CH, ∴CB-CP=CE+CP,即CP=CB-CE, 又∵CB=AC, ∴PD=CD-CP=AC-CB+CE, ∴PD=CE-AC. 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ③当P在D点下方时,如图4, 同理,PD=AC-CE, 当AC=6,CE=2时,PD=3-2=1. 故答案为:1. 【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服