收藏 分销(赏)

贵阳市数学八年级上册期末试卷含答案[002].doc

上传人:丰**** 文档编号:4879349 上传时间:2024-10-17 格式:DOC 页数:18 大小:1.13MB 下载积分:8 金币
下载 相关 举报
贵阳市数学八年级上册期末试卷含答案[002].doc_第1页
第1页 / 共18页
贵阳市数学八年级上册期末试卷含答案[002].doc_第2页
第2页 / 共18页


点击查看更多>>
资源描述
贵阳市数学八年级上册期末试卷含答案 一、选择题 1、下列4个图形中,既是中心对称图形又是轴对称图形的是(       ) A. B. C. D. 2、世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为(       ) A. B. C. D. 3、下列计算正确的是(       ) A. B. C. D. 4、函数的自变量x的取值范围是(       ) A. B. C. D.x=2 5、下列从左边到右边的变形,属于因式分解的是(       ) A. B. C. D. 6、下列式子从左到右变形正确的是(  ) A.=1 B. C. D.=a﹣b 7、如图,点E,C,F,B在同一条直线上,ACDF,EC=BF,则添加下列条件中的一个条件后,不一定能判定△ABC≌△DEF的是(  ) A.AC=DF B.AB=DE C.∠A=∠D D.ABDE 8、若关于的方程有增根,则的值为(       ) A.-5 B.0 C.1 D.2 9、如图所示,在中,,,D是边的中点,E是边上一点,若平分的周长,则的长是(       ) A.1 B.2 C. D. 二、填空题 10、如图,AD是△ABC 的角平分线,DF⊥AB,垂足为F,且DE=DG,则∠AED+∠AGD和是(       ) A.180° B.200° C.210° D.240° 11、如果分式的值是0,则a的取值范围是__________. 12、点(4,-6)关于x轴对称的点的坐标是_______. 13、若,则_____. 14、已知,则___________. 15、如图,在中,,点P在的平分线上,将沿对折,使点B恰好落在边上的点D处,连接,若,则______. 16、若方程4x2+(m+1)x+1=0的左边可以写成一个完全平方式,则m的值为__. 17、已知a+b=5,ab=6,则a﹣b的值为 _____. 18、如图,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为.设点的运动速度为,若使得与全等,则的值为 __. 三、解答题 19、因式分解: (1)x3﹣16x; (2)3x2﹣12xy+12y1、 20、解分式方程: 21、如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=CF.求证:∠A=∠D. 22、已知:直线,直线AD与直线BC交于点E,∠AEC=110°. (1)如图①,BF平分∠ABE交AD于F,DG平分∠CDE交BC于G,求∠AFB+∠CGD的度数; (2)如图②,∠ABC=30°,在∠BAE的平分线上取一点P,连接PC,当∠PCD=∠PCB时,直接写出∠APC的度数. 23、某商场在六一儿童节来临之际购进A、B两种玩具共110个,购买A玩具与购买B玩具的总费用相同,且都为1500元.已知A玩具的单价是B玩具单价的1.2倍. (1)求A、B两种玩具的单价各是多少? (2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个? 24、若一个正整数能表示成(是正整数,且)的形式,则称这个数为“明礼崇德数”,与是的一个平方差分解. 例如:因为,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:(是正整数),所以也是“明礼崇德数”,与是的一个平方差分解. (1)判断:9_______“明礼崇德数”(填“是”或“不是”); (2)已知(是正整数,是常数,且),要使是“明礼崇德数”,试求出符合条件的一个值,并说明理由; (3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若既是“七喜数”,又是“明礼崇德数”,请求出的所有平方差分解. 25、方法探究: 已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”. 问题解决: (1)对于二次多项式,我们把x= 代入该式,会发现成立; (2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值; (3)对于多项式,用“试根法”分解因式. 一、选择题 1、B 【解析】B 【分析】根据轴对称图形与中心对称图形的概念依次分析求解. 【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意; B、既是轴对称图形,又是中心对称图形,故本选项符合题意; C、不是轴对称图形,是中心对称图形,故本选项不合题意; D、是轴对称图形,不是中心对称图形,故本选项不合题意. 故选B. 【点睛】本题考查中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2、A 【解析】A 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000076用科学记数法表示为, 故选:A. 【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】根据积的乘方,幂的乘方,同底数幂的乘除法, 逐项分析判断即可求解. 【详解】解:A. ,故该选项不正确,不符合题意; B. ,故该选项不正确,不符合题意;        C. 故该选项正确,符合题意; D. ,故该选项不正确,不符合题意; 故选C 【点睛】本题考查了积的乘方,幂的乘方,同底数幂的乘除法,掌握积的乘方,幂的乘方,同底数幂的乘除法运算法则是解题的关键. 4、A 【解析】A 【分析】根据分母不为0,可得x-2≠0,进行计算即可解答. 【详解】解:由题意得: x-2≠0, ∴x≠2, 故选:A. 【点睛】本题考查了函数自变量的取值范围,熟练掌握分母不为0是解题的关键. 5、D 【解析】D 【分析】根据因式分解的定义,因式分解是把一个多项式化为几个整式积的形式,对各选项分析判断后利用排除法求解. 【详解】解:A.原式是整式的乘法运算,不符合因式分解的定义,不是因式分解,故本选项符合题意; B.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意; C.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意; D.原式符合因式分解的定义,是因式分解,故本选项符合题意; 故选:D. 【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分. 6、D 【解析】D 【分析】根据分式的基本性质求解判断即可. 【详解】解:A、,变形错误,不符合题意; B、,变形错误,不符合题意; C、,变形错误,不符合题意; D、,变形正确,符合题意; 故选D. 【点睛】本题主要考查了分式的基本性质,熟知分式的基本性质是解题的关键. 7、B 【解析】B 【分析】先证明∠ACB=∠DFE,EF=BC,然后根据全等三角形的判定方法对各选项进行判断. 【详解】解:∵AC//DF, ∴∠ACB=∠DFE, ∵EC=BF, ∴EC+CF=BF+CF, 即EF=BC, ∴当添加AC=DF时,可根据“SAS”判定△ABC≌△DEF; 当添加∠A=∠D时,可根据“AAS”判定△ABC≌△DEF; 当添加AB∥DE时,∠B=∠E,可根据“ASA”判定△ABC≌△DEF. 故选:B. 【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件. 8、A 【解析】A 【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答. 【详解】解:, 去分母得,m+1+2x=0, 解得:, ∵方程有增根, ∴x=2, 把x=2代入,得, , 解得. 故选A. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 9、D 【解析】D 【分析】延长到点F,使,连接AF,过点作于点H,根据DE平分的周长, D为中点,推出,得到,推出是的中位线.得到,,根据三角形外角性质和等边对等角,, =1,得到,推出,推出,得到. 【详解】延长到点F,使,连接AF,过点作于点H, 平分的周长,且D为中点     是的中位线. , , =1, , ∴, , . 故选:D. 【点睛】本题主要考查了三角形中位线,等腰三角形,三角形外角,含30°角的直角三角形,解决问题的关键是添加辅助线,熟练掌握三角形中位线的判定和性质,等腰三角形性质,三角形外角性质,含30°角的直角三角形边的性质. 二、填空题 10、A 【解析】A 【分析】过点作于,如图,根据角平分线的性质得到,则可根据“”判断,所以,然后利用得到. 【详解】解:过点作于,如图, 是的角平分线,,, , 在和中, , , , , . 故选:A. 【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了直角三角形全等的判定与性质.利用角平分线性质构造全等三角形是解题关键. 11、≠2 【分析】根据分式的值为0的条件:分子等于0且分母不等于0即可得出答案. 【详解】解:∵分式的值是0, ∴x+1=0,2x+a≠0, ∴x=-1, ∴-2+a≠0, ∴a≠1、 故答案为:a≠1、 【点睛】本题考查了分式的值为0的条件,掌握分式的值为0的条件:分子等于0且分母不等于0是解题的关键. 12、(4,6) 【分析】根据坐标的对称特征计算求值即可; 【详解】解:点(4,-6)关于x轴对称的点的坐标是(4,6), 故答案为:(4,6) 【点睛】本题考查了坐标的对称特征:关于x轴对称时横坐标不变,纵坐标互为相反数;关于y轴对称时纵坐标不变,横坐标互为相反数;关于原点对称时横坐标、纵坐标都互为相反数. 13、-1 【详解】根据得:, 即, xyz=y2z+y-z,且yz-z=-1, 故, 故答案:-1. 14、 【分析】根据同底数幂除法的逆运算,幂的乘方的逆运算的计算法则求解即可. 【详解】解:∵,, ∴, 故答案为:. 【点睛】本题主要考查了同底数幂除法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键. 15、【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案. 【详解】解:如下图所所示,连接, ∵点P在的平 【解析】 【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案. 【详解】解:如下图所所示,连接, ∵点P在的平分线上, ∴, ∵, ∴, ∵折叠, ∴, ∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴, ∵, ∵ , ∴, ∴, ∴, ∴, ∵ ∴, ∴. 【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明. 16、-5或3 【分析】利用完全平方公式的结构特征判断即可求出m的值. 【详解】解:∵4x2+(m+1)x+1可以写成一个完全平方式, ∴4x2+(m+1)x+1=(2x±1)2=4x2±4x+1, ∴m 【解析】-5或3 【分析】利用完全平方公式的结构特征判断即可求出m的值. 【详解】解:∵4x2+(m+1)x+1可以写成一个完全平方式, ∴4x2+(m+1)x+1=(2x±1)2=4x2±4x+1, ∴m+1=±4, 解得:m=-5或3, 故答案为:-5或2、 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键. 17、【分析】根据完全平方公式的变形求解即可. 【详解】解:∵a+b=5, ∴, ∴, ∴, 故答案为:. 【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键. 【解析】 【分析】根据完全平方公式的变形求解即可. 【详解】解:∵a+b=5, ∴, ∴, ∴, 故答案为:. 【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键. 18、或 【分析】根据点的运动速度为,,若使与全等,有两种情况:①,;②,,列出方程,然后求出方程的解即可. 【详解】解:∵点的运动速度为,点的运动速度为,它们运动的时间为, 又∵,, ∴,,, ∵, 【解析】或 【分析】根据点的运动速度为,,若使与全等,有两种情况:①,;②,,列出方程,然后求出方程的解即可. 【详解】解:∵点的运动速度为,点的运动速度为,它们运动的时间为, 又∵,, ∴,,, ∵, ∴当与全等时,有两种情况: ①,, 则:,, 解得:,; ②,, 则:,, 解得:,; ∴的值为或. 故答案为:或. 【点睛】本题考查全等三角形的判定的应用,路程、速度、时间之间的关系,方程等知识.能求出符合题意的所有情况是解题的关键. 三、解答题 19、(1)x(x+4)(x-4); (2)3(x-2y)2 【分析】(1)先提公因式,然后利用平方差公式继续分解即可; (2)先提公因式,然后利用完全平方公式继续分解即可. (1) x3-16x =x( 【解析】(1)x(x+4)(x-4); (2)3(x-2y)2 【分析】(1)先提公因式,然后利用平方差公式继续分解即可; (2)先提公因式,然后利用完全平方公式继续分解即可. (1) x3-16x =x(x2-16) =x(x+4)(x-4); (2) 3x2-12xy+12y2 =3(x2-4xy+4y2) =3(x-2y)1、 【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式. 20、分式方程无解 【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解. 【详解】去分母得:y﹣2=2y﹣6+1 移项合并得:y=2、 经检验:y=3是增 【解析】分式方程无解 【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解. 【详解】去分母得:y﹣2=2y﹣6+1 移项合并得:y=2、 经检验:y=3是增根,分式方程无解. 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 21、见解析 【分析】由BE与CF相等,利用等式的性质得到BC=EF,利用SSS得到三角形ABC与三角形DFE全等,利用全等三角形对应角相等即可得证. 【详解】证明:∵BE=CF, ∴BE+EC=CF+E 【解析】见解析 【分析】由BE与CF相等,利用等式的性质得到BC=EF,利用SSS得到三角形ABC与三角形DFE全等,利用全等三角形对应角相等即可得证. 【详解】证明:∵BE=CF, ∴BE+EC=CF+EC,即BC=EF, ∵在△ABC和△DFE中, ∴△ABC ≌ △DFE, ∴∠A=∠D. 【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 22、(1)195° (2)50°或10° 【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解; (2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在 【解析】(1)195° (2)50°或10° 【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解; (2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解. (1) 解:过点E作MN∥AB,如下图①所示: ∵AB∥CD,MN∥AB, ∴AB∥MN∥CD, ∴∠BAE=∠AEM,∠DCE=∠CEM,∠ABE=∠BEN,∠NED=∠EDC, ∵∠AEC=110°, ∴∠BED=110°, ∴∠BAE+∠DCE=∠AEM+∠CEM=∠AEC=110°, ∠ABE+∠CDE=∠BEN+∠NED=∠BED=110°, ∵BF平分∠ABE,DG平分∠CDE, ∴∠ABF=∠ABE,∠CDG=∠CDE, ∴∠AFB+∠CGD=180°-(∠BAE+∠ABF)+180°-(∠DCE+∠CDG) =180°-∠BAE-∠ABE+180°-∠DCE-∠CDE =360°-(∠BAE+∠DCE)-(∠ABE+∠CDE) =360°-110°-×110° =195°, ∴∠AFB+∠CGD的度数为195°. (2) 解:分类讨论: 情况一:当点P位于BC左侧时,如下图②所示: 此时∠PCD=∠PCB不可能成立,故此情况不存在; 情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图③所示: ∵∠AEC=110°,∠ABC=30°, ∴∠BAE=110°-30°=80°, ∵AB∥CD,MP∥AB, ∴AB∥MP∥CD, ∴∠APM=∠BAP=∠BAE=40°, ∠ABC=∠BCD=30°, 又∵∠PCD=∠PCB, ∴∠PCD=∠BCD=10°, ∴∠MPC=∠PCD=10°, ∴∠APC=∠MPC+∠APM=10°+40°=50°; 情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图④所示: ∵∠AEC=110°,∠ABC=30°, ∴∠BAE=110°-30°=80°, ∵AB∥CD,MP∥AB, ∴AB∥MP∥CD, ∴∠APM=∠BAP=∠BAE=40°, ∠ABC=∠BCD=30°, 又∵∠PCD=∠PCB, ∴∠PCD=∠BCD=30°, ∴∠MPC=∠PCD=30°, ∴∠APC=∠APM-∠MPC=40°-30°=10°, 综上,∠APC的度数为50°或10°. 【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键. 23、(1)A种玩具单价为30元/个,B种玩具单价为25元/个 (2)A种玩具最多能购进100个 【分析】(1)首先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,然后根据题意,列出方程,解出即 【解析】(1)A种玩具单价为30元/个,B种玩具单价为25元/个 (2)A种玩具最多能购进100个 【分析】(1)首先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,然后根据题意,列出方程,解出即可得出答案; (2)首先设购进种玩具个,则购进B种玩具个,然后根据题意和(1)中A、B两种玩具的单价,列出不等式,解出即可得出答案. (1) 解:设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个, 由题意得:, 解得:, 经检验,是原方程的解,且符合题意, ∴, 答:A种玩具单价为30元/个,B种玩具单价为25元/个. (2) 解:设购进种玩具个,则购进B种玩具个, 依题意得:, 解得:, 答:A种玩具最多能购进100个. 【点睛】本题考查了分式方程的实际应用和不等式的实际应用,解本题的关键在理解题意列出方程或不等式. 24、(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方 【解析】(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案; (3)确定“七喜数”m的值,分别将其平方差分解即可. 【详解】(1)∵9=52-42, ∴9是“明礼崇德数”, 故答案为:是; (2)当k=-5时,是“明礼崇德数”, ∵当k=-5时, , =, =, =, = =. ∵是正整数,且, ∴N是正整数,符合题意, ∴当k=-5时,是“明礼崇德数”; (3)由题意得:“七喜数”m=178或279, 设m==(a+b)(a-b), 当m=178时, ∵178=289, ∴,得(不合题意,舍去); 当m=279时, ∵279=393=931, ∴①,得,∴, ②,得,∴, ∴既是“七喜数”又是“明礼崇德数”的m是279,,. 【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解. 25、(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; (3)多项式 【解析】(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; (3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可. (1) 解:当x=±2时,x2-4=0, 故答案为:±2; (2) 解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b), ∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b, ∴1-a=1,b=-3, ∴a=0,b=-3; (3) 解:当x=2时,x3+4x2-3x-18=8+16-6-18=0, ∴多项式有因式(x-2), 设另一个因式为(x2+ax+b), ∴x3+4x2-3x-18=(x-2)(x2+ax+b), ∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b, ∴a-2=4,2b=18, ∴a=6,b=9, ∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)1、 【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服