收藏 分销(赏)

人教版八年级下册数学苏州数学期末试卷练习(Word版含答案).doc

上传人:快乐****生活 文档编号:1875756 上传时间:2024-05-10 格式:DOC 页数:26 大小:954.04KB 下载积分:10 金币
下载 相关 举报
人教版八年级下册数学苏州数学期末试卷练习(Word版含答案).doc_第1页
第1页 / 共26页
人教版八年级下册数学苏州数学期末试卷练习(Word版含答案).doc_第2页
第2页 / 共26页


点击查看更多>>
资源描述
人教版八年级下册数学苏州数学期末试卷练习(Word版含答案) 一、选择题 1.当x=0时,下列式子有意义的是( ) A. B. C. D. 2.满足下述条件的三角形中,不是直角三角形的是( ) A.三条边长之比为1:: B.三条边长分别为1,,2 C.三个内角之比为3:4:5 D.两个内角分别为40°和50° 3.下面条件中,能判定四边形是平行四边形的条件是( ) A.一组对角相等 B.对角线互相平分 C.一组对边相等 D.对角线互相垂直 4.一组数据:1,2,3,2,1,0.这组数据的中位数是( ) A.1 B.2 C.3 D.1.5 5.如图,已知正方形B的面积为100,如果正方形C的面积为169,那么正方形A的面积为( ) A.269 B.69 C.169 D.25 6.如图,在菱形中,于点,点恰好为的中点,则菱形的较大内角度数为( ) A.100° B.120° C.135° D.150° 7.如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为( ) A.6cm2 B.8cm2 C.10cm2 D.12cm2 8.下面图象反映的过程是:小刚从家去菜地浇水,又去玉米地除草,然后回家,如果菜地和玉米地的距离为a千米,小刚在玉米地除草比在菜地浇水多用了b分钟,则a,b的值分别为( ) A.1,8 B.0.5,12 C.1,12 D.0.5,8 二、填空题 9.要使有意义,则x的取值范围为 ______. 10.已知一个菱形有一个内角为,周长为,那么该菱形的面积等于________ . 11.一条直角边3,斜边长为5的直角三角的面积为_________. 12.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 _______. 13.已知直线经过点,那么_________. 14.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是________. 15.如图①,在平面直角坐标系中,等腰在第一象限,且轴.直线从原点O出发沿x轴正方向平移.在平移过程中,直线被截得的线段长度n与直线在x轴上平移的距离m的函数图象如图②所示,那么的面积为__________. 16.如图,在中,,,,点、分别在、上,将沿翻折,使与的中点重合,则的长为______. 三、解答题 17.计算: (1); (2). 18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺? 19.图①、图②都是4×4的正方形网格,每个小正方形的项点为格点,每个小正方形的边长均为1,在图①、图②中已画出AB,点A、B均在格点上,按下列要求画图: (1)在图①中,画一个以AB为腰且三边长都是无理数的等腰三角形ABC,点C为格点; (2)在图②中,画一个以AB为底的等腰三角形ABD,点D为格点. 20.如图,在平行四边形中,点、分别为边,的中点,连接,,. (1)求证:; (2)若,求证:四边形为菱形. 21.阅读理解:把分母中的根号化去叫做分母有理化,例如:①==;②===.等运算都是分母有理化,根据上述材料, (1)化简:; (2)+++…+. 22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案: 方案一:每日底薪50元,每完成一单外卖业务再提成3元; 方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元. 设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元). (1)分别写出y1、y2关于x的函数关系式; (2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由. 23.如图,正方形ABCD的顶点C处有一等腰直角三角形CEP,∠PEC=90°,连接AP,BE. (1)若点E在BC上时,如图1,线段AP和BE之间的数量关系是    ; (2)若将图1中的△CEP顺时针旋转使P点落在CD上,如图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在(2)的基础上延长AP,BE交于F点,若DP=PC=2,求BF的长. 24.如图,,是直线与坐标轴的交点,直线过点,与轴交于点. (1)求,,三点的坐标. (2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标. (3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理由. 25.在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD, (1)如图1,求证:△AMC≌△AND; (2)如图1,若DF=,求AE的长; (3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由. 26.如图,已知点A(a,0),点C(0,b),其中a、b满足|a﹣8|+b2﹣8b+16=0,四边形OABC为长方形,将长方形OABC沿直线AC对折,点B与点B′对应,连接点C交x轴于点D. (1)求点A、C的坐标; (2)求OD的长; (3)E是直线AC上一个动点,F是y轴上一个动点,求△DEF周长的最小值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可; 【详解】 解:当x=0时, 没有意义,则没有意义; 当x=0时, ,则没有意义; 当x=0时,x-1=-1,则没有意义; 故选:C 【点睛】 本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键 2.C 解析:C 【分析】 根据勾股定理的逆定理和三角形内角和定理对各选项进行逐一判断即可. 【详解】 解:A、∵12+()2=3=()2,∴能够成直角三角形,故本选项不符合题意; B、∵12+()2=4=22,∴能够成直角三角形,故本选项不符合题意; C、设∠A=3x°,∠B=4x°,∠C=5x°, ∵∠A+∠B+∠C=180°, ∴3x+4x+5x=180, 解得:x=15, ∴∠C=5x°=75°, 即此时三角形不是直角三角形,故本选项符合题意; D、两个内角分别为40°和50°,所以另一个内角是90°,是直角三角形,故本选项不符合题意; 故选:C. 【点睛】 本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,也考查了三角形的内角和定理. 3.B 解析:B 【解析】 【分析】 根据平行四边形判定定理判断即可. 【详解】 ∵一组对角相等的四边形不是平行四边形, ∴A错误; ∵对角线互相平分的四边形是平行四边形, ∴B正确; ∵一组对边相等的四边形不是平行四边形, ∴C错误; ∵对角线互相垂直的四边形不是平行四边形, ∴D错误; 故选B. 【点睛】 本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键. 4.D 解析:D 【解析】 【分析】 根据中位数的定义求解即可. 【详解】 解:将这组数据重新排列为0、1、1、2、2、3, ∴这组数据的中位数为, 故选:D. 【点睛】 本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 5.B 解析:B 【解析】 根据题意知正方形的B面积为100,正方形C的面积为169, 则字母A所代表的正方形的面积=169−100=69. 故选B. 6.B 解析:B 【解析】 【分析】 连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD=∠BCD=120°,即可得出答案. 【详解】 连接AC,如图: ∵四边形ABCD是菱形, ∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC, ∴∠BAD+∠B=180°, ∵CE⊥AB,点E是AB中点, ∴BC=AC, ∴BC=AC=AB, ∴△ABC是等边三角形, ∴∠B=60°, ∴∠D=60°,∠BAD=∠BCD=120°; 即菱形ABCD的较大内角度数为120°; 故选:B. 【点睛】 本题考查了菱形的性质、线段垂直平分线的性质、等边三角形的判定与性质等知识;熟练掌握菱形的性质和等边三角形的判定与性质是解题的关键. 7.A 解析:A 【解析】 【分析】 根据折叠的条件可得:,在中,利用勾股定理就可以求解. 【详解】 将此长方形折叠,使点与点重合,, , 根据勾股定理得:, 解得:. . 故选:A. 【点睛】 本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键. 8.D 解析:D 【分析】 先分析每一段图像对应的小刚的事件,再根据数据计算即可. 【详解】 解:此函数图像大致可分以下几个阶段: ①0-12分种,小刚从家走到菜地; ②12-27分钟,小刚在菜地浇水; ③27-33分钟,小刚从菜地走到玉米地; ④33-56分钟,小刚在玉米地除草; ⑤56-74分钟,小刚从玉米地回到家; 综合题意,由③的过程知,(千米); 由②、④的过程知b=(分钟). 故选D. 【点睛】 本题主要考查了学生对函数图象的理解,要求学生具有相应的读图能力,以及将图像信息与实际问题结合的能力,考生在解答此类试题时一定要注意分析,要能根据函数图象的性质和图象上的数据得出对应事件的信息,从而列出算式得到正确的结论. 二、填空题 9.x ≤ 2 【解析】 【分析】 根据二次根式有意义的条件可得6-3x≥0,再解不等式即可. 【详解】 解:由题意得:6-3x≥0, 解得x≤2. 故答案为:x≤2. 【点睛】 此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.E 解析: 【解析】 【分析】 作于E,由三角函数求出菱形的高AE,再运菱形面积公式=底×高计算即可; 【详解】 作于E,如图所示, ∵四边形ABCD是菱形,周长为,, ∴,, ∴, ∴菱形的面积. 故答案为. 【点睛】 本题主要考查了菱形的性质,结合三角函数的计算是解题的关键. 11.6 【解析】 【分析】 根据勾股定理可以求得另一条直角边的长,然后即可求得此直角三角形的面积. 【详解】 解:∵直角三角形一直角边的长是3,斜边长是5, ∴另一条直角边为=4, ∴此直角三角形的面积为:=6, 故答案为:6. 【点睛】 本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和三角形的面积公式解答. 12.5 【分析】 先根据勾股定理计算出斜边,再根据在直角三角形中,斜边上的中线等于斜边的一半即可求解. 【详解】 解:因为直角三角形的两条直角边分别5和12, 由勾股定理可得:斜边=, 因为斜边上的中线等于斜边的一半, 所以斜边中线=13÷2=6.5, 故答案为:6.5. 【点睛】 本题主要考查勾股定理和直角三角形斜边上的中线等于斜边的一半,解决本题的关键是要熟练掌握勾股定理和直角三角形斜边上的中线等于斜边的一半. 13.-4 【分析】 将点代入直线的表达式中求解即可. 【详解】 解:∵直线经过点, ∴0=4+b, 解得:b=﹣4, 故答案为:﹣4. 【点睛】 本题考查待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式的方法是解答的关键. 14.E 解析:9 【详解】 试题解析:连接EO,延长EO交AB于H. ∵DE∥OC,CE∥OD, ∴四边形ODEC是平行四边形, ∵四边形ABCD是矩形, ∴OD=OC, ∴四边形ODEC是菱形, ∴OE⊥CD, ∵AB∥CD,AD⊥CD, ∴EH⊥AB,AD∥OE,∵OA∥DE, ∴四边形ADEO是平行四边形, ∴AD=OE=6, ∵OH∥AD,OB=OD, ∴BH=AH, ∴EH=OH+OE=3+6=9, 故答案为:9. 点睛:平行四边形的判定:两组对边分别平行的四边形是平行四边形. 15.2 【分析】 过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积. 【详解】 如 解析:2 【分析】 过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积. 【详解】 如图①,过点作于 由图②可知,当直线平移经过点时,; 随着平移,的值增大; 如图,当经过点时,与的交点为,如图 此时,则, ,与轴的夹角为45°, 为等腰直角三角形, 即 是等腰三角形 , 故答案为:2. 【点睛】 本题考查了一次函数图像的平移,等腰三角形的性质,勾股定理,从函数图像上获取信息,及掌握与轴的夹角为45°是解题的关键. 16.【分析】 过点M作于N,则,可得MN是的中位线,利用三角形中位线定理可得MN=AC=3,BN=CN=BC=4,设CF=x,则NF=4-x,由折叠的性质可得MF=CF,在中,利用勾股定理即可求解. 解析: 【分析】 过点M作于N,则,可得MN是的中位线,利用三角形中位线定理可得MN=AC=3,BN=CN=BC=4,设CF=x,则NF=4-x,由折叠的性质可得MF=CF,在中,利用勾股定理即可求解. 【详解】 解:过点M作于N, ∵,, ∴, ∵是的中点, ∴MN是的中位线, ∴MN=AC=3,BN=CN=BC=4, 设CF=x,则NF=4-x, ∵将沿翻折,使与的中点重合, ∴MF=CF=x, 在中,, ∴,解得, ∴CF=. 故答案为:. 【点睛】 本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键. 三、解答题 17.(1);(2). 【分析】 (1)根据二次根式的混合运算的法则计算即可; (2)利用平方差公式和完全平方公式展开,再合并即可. 【详解】 解:(1) ; (2) . 【点睛】 本题考查了二次根式 解析:(1);(2). 【分析】 (1)根据二次根式的混合运算的法则计算即可; (2)利用平方差公式和完全平方公式展开,再合并即可. 【详解】 解:(1) ; (2) . 【点睛】 本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键. 18.折断处离地面的高度有3.2尺. 【分析】 根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程求解即可. 【详解】 解:如图,设折断处离地面的高度为x尺,则AB=10-x,BC=6, 解析:折断处离地面的高度有3.2尺. 【分析】 根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程求解即可. 【详解】 解:如图,设折断处离地面的高度为x尺,则AB=10-x,BC=6, 在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2. 解得:x=3.2. 答:折断处离地面的高度有3.2尺. 【点睛】 本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题. 19.(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; 解析:(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; (2)如图所示:即为所求. 【点睛】 本题考查了应用设计与作图,正确应用勾股定理是解题的关键. 20.(1)见解析;(2)见解析 【分析】 (1)根据平行四边形的对边相等的性质可以得到AD=BC,AB=CD,又点E、F是AB、CD中点,所以AE=CF,然后利用边角边即可证明两三角形全等; (2)先证 解析:(1)见解析;(2)见解析 【分析】 (1)根据平行四边形的对边相等的性质可以得到AD=BC,AB=CD,又点E、F是AB、CD中点,所以AE=CF,然后利用边角边即可证明两三角形全等; (2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形可得四边形BEDF是平行四边形;再根据直角三角形斜边上的中线等于斜边的一半可得DE=EB=AB,从而可得四边形BFDE为菱形. 【详解】 证明:(1)∵四边形是平行四边形, ∴,,. ∵、分别为、的中点, ∴,, ∴,, 在△ADE和△CBF中, ∴. (2)∵AB=CD,AE=CF, ∴BE=DF, 又AB∥CD, ∴BE∥DF, ∴四边形BEDF是平行四边形, ∵∠ADB=90°, ∴点E为边AB的中点, ∴, ∴平行四边形为菱形. 【点睛】 此题主要考查了菱形的判定,以及全等三角形的判定,关键是掌握一组邻边相等的平行四边形是菱形,直角三角形斜边上的中线等于斜边的一半. 21.(1)+;(2). 【解析】 【分析】 (1)分母有理化即可; (2)先分母有理化,然后合并即可. 【详解】 解:(1); (2)+++…+ =. 【点睛】 此题考查了二次根式的分母有理化,本题 解析:(1)+;(2). 【解析】 【分析】 (1)分母有理化即可; (2)先分母有理化,然后合并即可. 【详解】 解:(1); (2)+++…+ =. 【点睛】 此题考查了二次根式的分母有理化,本题中二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.找出分母的有理化因式是解本题的关键. 22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析 【分析】 (1)根据题意,可以写出y1,y2关于x的函数解析式; (2)在0 解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析 【分析】 (1)根据题意,可以写出y1,y2关于x的函数解析式; (2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围. 【详解】 解:(1)由题意得:y1=50+3x, 当0<x<30且x为整数时,y2=80, 当x≥30时且x为整数时,y2=80+5(x-30)=5x-70; (2)当0<x<30且x为整数时,当50+3x=80时, 解得x=10, 即10<x<30时,y1>y2,0<x<10时,y1<y2, 当x≥30且x为整数时,50+3x=5x-70时, 解得x=60, 即x>60时,y2>y1,30≤x<60时,y2<y1, ∴从日工资收入的角度考虑, ①当0<x<10或x>60时,y2>y1,他应该选择方案二; ②当10<x<60时,y1>y2,他应该选择方案一; ③当x=10或x=60时,y1=y2,他选择两个方案均可. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 23.(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; ( 解析:(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; (2)过点B作BH⊥BE,且BH=BE,连接AH,EH,证明△ABH≌△BEC,得到AH=EC=PE,∠AHB=∠CEB,从而证明四边形AHEP是平行四边形,同理可得AP=EH=BE; (3)过B,D分别作AF的垂线,垂足为K,M,证明△ABK≌△DAM,得到BK=AM,求出AP,在△ADP中利用面积法求出DM,可得AM和BK,再利用勾股定理求出BF即可. 【详解】 解:(1)∵点E在BC上,△PEC为等腰直角三角形, ∴PE=CE,∠PCE=45°, ∵四边形ABCD是正方形, ∴∠ACB=45°, ∴A,P,C三点共线,设正方形ABCD的边长为1,CE=x, ∴PE=x,PC=x,AC=, ∴AP=AC-PC=,BE=BC-CE=1-x, ∴AP=BE; (2)成立, 如图,过点B作BH⊥BE,且BH=BE,连接AH,EH, ∵∠ABC=∠EBH=90°, ∴∠CBE+∠ABE=∠ABH+∠ABE=90°, ∴∠CBE=∠ABH, 又∵BH=BE,AB=BC, ∴△ABH≌△BEC(SAS), ∴AH=EC=PE,∠AHB=∠CEB, ∴∠AHE=∠AHB-∠EHB=∠CEB-45°, ∵∠HEP=360°-∠CEB-∠HEB-∠CEP =360°-∠CEB-45°-90° =225°-∠CEB, ∴∠AHE+∠HEP=∠CEB-45°+225°-∠CEB=180°, ∴AH∥PE, ∴四边形AHEP是平行四边形, ∴AP=EH=BE; (3)如图,过B,D分别作AF的垂线,垂足为K,M, ∵∠BAD=∠BAK+∠DAM=90°,∠ABK+∠BAK=90°, ∴∠ABK=∠DAM, 又∵AB=AD,∠AKB=∠AMD=90°, ∴△ABK≌△DAM(AAS), ∴BK=AM, ∵四边形ABCD是正方形,DP=PC=2, ∴AD=CD=4,∠AHE=90°, ∴AP=, ∴S△ADP=, ∴, ∴, ∴AM=, 由(2)可知:△EBH为等腰直角三角形,HE∥AP, ∴∠KBF=∠HBE=45°, ∴∠F=45°, ∴BF==. 【点睛】 本题考查了正方形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125. 【解析】 【分析】 (1)分别令x=0,y=0即可确定A、B 解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或. 【解析】 【分析】 (1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标; (2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标; (3)分别就D点在AB和D点BC上两种情况进行解答即可. 【详解】 解:(1)在中, 令,得, 令,得, ,. 把代入,, 得 直线为:. 在中, 令,得, 点的坐标为; (2)如图点为所求 点是的中点,,. . 点关于轴的对称点的坐标为. 设直线的解析式为. 把,代入, 得. 解得,. 故该直线方程为:. 令,得点的坐标为. (3)存在,点的坐标为或. ①当点在上时,由 得到:, 由等腰直角三角形求得点的坐标为; ②当点在上时,如图,设交轴于点. 在与中, . , 点的坐标为, 易得直线的解析式为, 与组成方程组, 解得. 交点的坐标为 【点睛】 本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键. 25.(1)见解析;(2)AE=;(3)(3),理由见解析. 【分析】 (1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明. ( 解析:(1)见解析;(2)AE=;(3)(3),理由见解析. 【分析】 (1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明. (2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE= GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长; (3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到 ,可知∥, 再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可. 【详解】 (1)证明:∵四边形AMFN是正方形, ∴AM=AN ∠AMC=∠N=90° ∴△AMC,△AND是Rt△ ∵△ABC是等边三角形 ∴AB=AC ∵旋转后AB=AD ∴AC=AD ∴Rt△AMC≌Rt△AND(HL) (2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD, 设AG= 则AE= GE= 易得△GBE是等腰直角三角形 ∴BG=EG= ∴AB=BC= 易得∠DHF=30° ∴HD=2DF= ,HF= ∴BF=BH+HF= ∵Rt△AMC≌Rt△AND(HL) ∴易得CF=DF= ∴BC=BF-CF= ∴ ∴ ∴AE= (3); 理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌, ∴ , ∴∥, ∴ ∵ ∴ ∴, ∵ ∴≌(SAS) ∴ ∴ ∴是等腰直角三角形 ∴ ∴ ∴ 【点睛】 本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线. 26.(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4. 【分析】 (1)根据非负数的性质可得a、b的值,由此可得问题的答案; (2)根据长方形的性 解析:(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4. 【分析】 (1)根据非负数的性质可得a、b的值,由此可得问题的答案; (2)根据长方形的性质和折叠的性质可得A=AB=4,C=CB=8,∠=∠B=90°,设OD=x,CD=y,根据勾股定理列方程,求解可得答案; (3)作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,由翻折的性质得D、H、G点的坐标,当点H,F,E,G四点共线时,DE+DF+EF长取得最小值,由此可得答案. 【详解】 解:(1)∵|a﹣8|+b2﹣8b+16=0, ∴|a﹣8|+(b﹣4)2=0, ∵|a﹣8|≥0,(b﹣4)2≥0, ∴a﹣8=0,b﹣4=0, ∴a=8,b=4, ∴A点的坐标为(8,0),C点的坐标为(0,4); (2)∵A点的坐标为(8,0),C点的坐标为(0,4), ∴OA=8,OC=4, ∵四边形OABC为长方形, ∴AB=OC=4BC=OA=8,∠B=∠COA=∠OCB=∠OAB=90°, 由折叠性质可知:A=AB=4,C=CB=8,∠=∠B=90°, 设OD=x,CD=y, 则AD=OA﹣OD=8﹣x,D=C﹣CD=8﹣y, Rt△OCD中,CD2=OC2+OD2, 即x2+16=y2①, Rt△AD中,AD2=D2+A2, 即(8﹣x)2=(8﹣y)2+16②, 联立①②式解得:, ∴OD=3, 故OD的长为3. (3)如图所示,作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG, ∵△AC为△ACB沿AC翻折得到,点D在BC上, ∴点D关于AC对称点G在BC上, 由对称性可知:CG=CD,HF=DF, ∵OD=3,CD=5, ∴D点的坐标为(3,0), 又∵H的坐标为(﹣3,0), ∴CG=CD=5, ∴G点的坐标为(5,4), ∴△DEF的周长=DE+DF+EF=HF+EG+EF≥GH, 当点H,F,E,G四点共线时,DE+DF+EF长取得最小值为: GH==4, 故△DEF周长的最小值为4. 【点睛】 本题属于四边形综合题目,考查了一次函数的性质,长方形的性质,折叠的性质等知识,解题的关键是掌握折叠的性质,属于中考压轴题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服