1、人教版八年级上册期末数学检测试卷含答案一、选择题1、下列4个图形中,既是中心对称图形又是轴对称图形的是()ABCD2、蚕丝是大自然中的天然纤维,是中国古代文明产物之一,也成为散发着现代科学技术魅力的新材料某蚕丝的直径大约是0.000016米,0.000016用科学记数法表示为()ABCD3、下列运算中正确的是()A(a)4a4Ba2a3a4Ca2+a3a5D(a2)3a54、要使分式有意义,的取值范围是()ABCD5、下列由左边到右边的变形,属于因式分解的是()A B CD 6、若ab,则下列分式变形正确的是()ABCD7、如图,再添加一个条件,不能判定的是()ABCD8、若关于的分式方程的解
2、是正数,则的取值范围是()A或BC且D且9、如图,已知点D为ABC的边BC上一点,连接AD,若B60,则21的度数为()A30B45C60D90二、填空题10、如图,4张边长分别为、的长方形纸片围成一个正方形,从中可以得到的等式是()ABCD11、当x_时,分式的值为012、点P(-2,4)关于x轴对称的点的坐标为_13、若,则_14、已知320,a2b2322, 则ab_15、如图,在RtABC中,BD是ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且,则的最小值为_16、如果x2-mx+16是一个完全平方式,那么m的值为_17、如图,两个正方形的边长分别为a、b,如
3、果a+b10,ab18,则阴影部分的面积为 _18、如图,AB4cm,ACBD3cm,CABDBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动设运动时间为t(s),则当ACP与BPQ全等时,点Q的运动速度为_cm/s三、解答题19、分解因式(1);(2)20、解方程:(1)(2)21、如图,点、在同一条直线上,求证:(1);(2)22、(1)如图1,求证:(2)如图2,、的二等分线(即角平分线)BF、CF交于点F已知,求BFC的度数;(3)如图3,、分别为、的2021等分线(i1,2,3,2019,2020)它们的交点从上到下依次为、已知,则_度
4、23、观察下列方程及解的特征:的解为:;的解为:,;的解为:,;解答下列问题:(1)请猜想,方程的解为_;(2)请猜想,方程_的解为,;(3)解关于的分式方程24、若一个正整数能表示成(是正整数,且)的形式,则称这个数为“明礼崇德数”,与是的一个平方差分解. 例如:因为,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:(是正整数),所以也是“明礼崇德数”,与是的一个平方差分解.(1)判断:9_“明礼崇德数”(填“是”或“不是”);(2)已知(是正整数,是常数,且),要使是“明礼崇德数”,试求出符合条件的一个值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大
5、7,称这个三位数为“七喜数”.若既是“七喜数”,又是“明礼崇德数”,请求出的所有平方差分解.25、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标一、选择题1、B【解析】B【分析】根据轴对称图形与中心对称图形的概念依次分析求解【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、
6、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意故选B【点睛】本题考查中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2、B【解析】B【分析】科学记数法的表示形式为 的形式,中1|a|10时,n是正数;当原数的绝对值1时,n是负数【详解】解:0.000016=1.6故选:B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中1|a|0且4-m 1,从而求得m的取值范围即
7、可【详解】解:,去分母,得1-m-(x-1)=-2,去括号,得1-m-x+1=-2,移项,合并得x=4-m,方程的解为正数,4-m0且4-m 1,解得m4且,故选:A【点睛】本题考查分式方程的特殊解,难度适中,解题的关键是注意要排除分式方程无解情况9、C【解析】C【分析】根据三角形的外角性质即可求解【详解】解:是的一个外角,B60,故选C【点睛】本题考查了三角形的外角的定义与性质,掌握三角形的外角的性质是解题的关键二、填空题10、A【解析】A【分析】根据外面大正方形的面积减去中间小正方形的面积等于4个长方形的面积即可得【详解】解:由图可知,外面大正方形的面积减去中间小正方形的面积等于4个长方形
8、的面积,则,故选:A【点睛】本题考查了平方差公式与图形面积,找出图中的面积关系是解题关键11、【分析】根据分式的意义可得到x20,即x2,根据题意分式值为0可知4x+30,由此求解即可【详解】解:分式的值为0,解得,故答案为:【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题12、【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解【详解】解:点P(-2,4)关于x轴对称的点的坐标为,故答案为:【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键13、【分析】根据条件,可得出,所以将式子展开化简可得:将代入,则
9、原式,故答案为【详解】解:,把代入得:原式,故答案为【点睛】本题主要考查知识点为:分式的加减,完全平方公式熟练掌握分式的加减方法和完全平方公式是解决此题的关键14、3【分析】首先将320转化为a+b=320(a-b),再将a2b2分解为(a+b)(a-b),再用整体代入思想即可得(a-b)2=32,从而得解【详解】解:,a+b=320(a-b),又a2b2322,(a+b)(a-b) 322320(a-b)2=322(a-b)2=32a-b=3故答案为:2、【点睛】本题考查根据条件等式求代数式值,因式分解平方差公式,解题关键是将条件等式进行转化,然后整体代入求解15、【分析】作点M关于BD的对
10、称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,【解析】【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,的最小值为,故答案为:【点睛】本题考查最短路线问题,涉及垂线段最短、含30角直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键16、8【分析】先根据两平方项确定出这两个数,再根据
11、完全平方公式的乘积二倍项即可确定m的值【详解】解:x2-mx+16=x2-mx+42,m=24,解得m=7、故答案为:7、【解析】8【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值【详解】解:x2-mx+16=x2-mx+42,m=24,解得m=7、故答案为:7、【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要17、23【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积【详解】解:a+b10,ab18,a2+b2=(a+b)2-2ab=100-36=64,阴影部分的【解析
12、】23【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积【详解】解:a+b10,ab18,a2+b2=(a+b)2-2ab=100-36=64,阴影部分的面积=23,故答案为:22、【点睛】此题考查了完全平方公式的变形计算,正确掌握完全平方公式法则是解题的关键18、1或1.5【分析】分两种情况讨论:当ACPBPQ时, 从而可得点的运动速度;当ACPBQP时,可得: 从而可得点的运动速度,从而可得答案【详解】解:当ACPBPQ时,则AC【解析】1或1.5【分析】分两种情况讨论:当ACPBPQ时, 从而可得点的运动速度;当ACPBQP时,可得: 从而可得点的运动速度,从而
13、可得答案【详解】解:当ACPBPQ时,则ACBP,APBQ,AC3cm,BP3cm,AB4cm,AP1cm,BQ1cm,点Q的速度为:1(11)1(cm/s);当ACPBQP时,则ACBQ,APBP,AB4cm,ACBD3cm,APBP2cm,BQ3cm,点Q的速度为:3(21)1.5(cm/s);故答案为:1或1.4、【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键三、解答题19、(1)5;(2)(a-1)(a+4)【分析】(1)原式提取5,再利用完全平方公式分解即可;(2)原式整理后,利用十字相乘法分解即可(1)解:=5()=5
14、;(2)解:=-16+【解析】(1)5;(2)(a-1)(a+4)【分析】(1)原式提取5,再利用完全平方公式分解即可;(2)原式整理后,利用十字相乘法分解即可(1)解:=5()=5;(2)解:=-16+3a+12=+3a-4=(a-1)(a+4)【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键20、(1)(2)分式方程无解【解析】(1)解:方程两边都乘以2x-1得,2-5=2x-1,解得x=-1,经检验:x=-1是原方程的解;(2)方程两边都乘以(x+2)(x-2)得,x(x+2【解析】(1)(2)分式方程无解【解析】(1)解:方
15、程两边都乘以2x-1得,2-5=2x-1,解得x=-1,经检验:x=-1是原方程的解;(2)方程两边都乘以(x+2)(x-2)得,x(x+2)-(x-2)(x+2)=8,解得x=2,经检验:x=2不是原方程的解,原方程无解【点睛】本题考查解分式方程,基本步骤是一化二解三检验21、(1)见解析;(2)见解析【分析】(1)由平行得出,根据SAS即可证明;(2)利用全等三角形的性质即可证明;【详解】证明:(1),即,在和中,.(2),【解析】(1)见解析;(2)见解析【分析】(1)由平行得出,根据SAS即可证明;(2)利用全等三角形的性质即可证明;【详解】证明:(1),即,在和中,.(2),.【点睛
16、】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用全等三角形的判定和性质定理进行证明推理22、(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:ABO10【解析】(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO1000ACO,由三角形的外角性质可求解【详解】解:(1
17、)如图1,延长BO交AC于D,即(2)由(1)知,ABE、ACE的二等分线(即角平分线)BF、CF交于点F,(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO1000ACO,BOCOBO1000+OCO1000+BO1000C(ABO+ACO)+BO1000C,BO1000CABO1000+ACO1000+BAC(ABO+ACO)+BAC,则ABO+ACO(BO1000CBAC),代入BOC(ABO+ACO)+BO1000C,BOC(BO1000CBAC)+BO1000C,解得:BO1000C(BOC+BAC)BOC+BAC,BOCm,BACn,BO100
18、0Cm+n();故答案为:【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键23、(1),(2)(3),【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果;(2)仿照阅读材料中的方程解的规律,归纳总结得到结果;(3)先把原方程变形后,利用得出的规律即可解答【解析】(1),(2)(3),【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果;(2)仿照阅读材料中的方程解的规律,归纳总结得到结果;(3)先把原方程变形后,利用得出的规律即可解答(1)解:猜想方程,即方程的解是,.故答案为:,;(2)解:猜想方程关于的方程的解为,.故答案为:
19、;(3)解:,即,即,即,即,可得或,解得:,经检验,是原分式方程的根【点睛】本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键24、(1)是;(2)k=-5;(3)m=279,.【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方【解析】(1)是;(2)k=-5;(3)m=279,.【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案;(3)确定“七喜数”m的值,分
20、别将其平方差分解即可.【详解】(1)9=52-42,9是“明礼崇德数”,故答案为:是;(2)当k=-5时,是“明礼崇德数”,当k=-5时, ,=,=,=,=.是正整数,且,N是正整数,符合题意,当k=-5时,是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=(a+b)(a-b),当m=178时,178=289,得(不合题意,舍去);当m=279时,279=393=931,得,得,既是“七喜数”又是“明礼崇德数”的m是279,.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“
21、明礼崇德数”的要求进行平方差分解.25、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图【解析】(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答
22、案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解