资源描述
人教版中学七7年级下册数学期末质量检测试卷
一、选择题
1.如图,与是( )
A.同位角 B.内错角 C.同旁内角 D.对顶角
2.下列图中的“笑脸”,由如图平移得到的是( )
A. B. C. D.
3.在直角坐标系中内点在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.两个角的和等于平角时,这两个角互为补角 B.内错角相等
C.两条平行线被第三条直线所截,内错角相等 D.对顶角相等
5.如图,点在的延长线上,能证明是( )
A. B.
C. D.
6.下列说法中正确的是( )
①1的平方根是1;
②5是25的算术平方根;
③(﹣4)2的平方根是﹣4;
④(﹣4)3的立方根是﹣4;
⑤0.01是0.1的一个平方根.
A.①④ B.②④ C.②③ D.②⑤
7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( )
A.50° B.60° C.70° D.80°
8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )
A.(﹣1,﹣1) B.(﹣1,1) C.(﹣2,1) D.(2,0)
九、填空题
9.若=x,则x的值为______.
十、填空题
10.若点与关于轴对称,则____________________________.
十一、填空题
11.如图,在平面直角坐标系中,点,,三点的坐标分别是,,,过点作,交第一象限的角平分线于点,连接交轴于点.则点的坐标为______.
十二、填空题
12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______.
十三、填空题
13.如图所示,是用一张长方形纸条折成的,如果,那么___°.
十四、填空题
14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________.
十五、填空题
15.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________.
十六、填空题
16.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________.
十七、解答题
17.计算下列各式的值:
(1)|–2|– + (–1)2021;
(2).
十八、解答题
18.求满足下列各式x的值
(1)2x2﹣8=0;
(2)(x﹣1)3=﹣4.
十九、解答题
19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据)
解:∵∠1=∠2(已知)
∴CF//BD( )
∴∠3+∠CAB=180°( )
∵∠3=∠C(已知)
∴∠C+∠CAB=180°(等式的性质)
∴AB//CD( )
∴∠4=∠EGA(两直线平行,同位角相等)
∵∠4=∠5(已知)
∴∠5=∠EGA(等量代换)
∴ED//FB( )
二十、解答题
20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).
(1)请在图中画出坐标轴,建立直角坐标系;
(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.
二十一、解答题
21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是________,小数部分是________.
(2)如果的小数部分为,的整数部分为,求的值.
(3)已知:,其中是整数,且,求的相反数.
二十二、解答题
22.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上.
(1)求正方形的面积和边长;
(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.
二十三、解答题
23.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
二十四、解答题
24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
二十五、解答题
25.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.
【详解】
解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,
故选:A.
【点睛】
本题主要考查了同位角的定义,是需要识记的内容,比较简单.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.D
【分析】
根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答.
【详解】
解:∵点M(a,b)在第三象限,
∴a<0,b<0,
∴-a>0,
那么点N(-a,b)所在的象限是:第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据内错角、对顶角、补角的定义一一判断即可.
【详解】
解:A、两个角的和等于平角时,这两个角互为补角,为真命题;
B、两直线平行,内错角相等,故错误,为假命题;
C、两条平行线被第三条直线所截,内错角相等,为真命题;
D、对顶角相等,为真命题;
故选:B.
【点睛】
本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.
5.D
【分析】
由题意根据平行线的判定定理对四个选项进行逐一分析即可.
【详解】
解:A. ,能证AD∥BC,故此选项错误;
B. ,不能证明,故此选项错误;
C. ,不能证明,故此选项错误;
D. ,能证明,故此选项正确.
故选:D.
【点睛】
本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角.
6.B
【分析】
根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.
【详解】
解:1的平方根是±1,故说法①错误;
5是25的算术平方根,故说法②正确;
(-4)2的平方根是±4,故说法③错误;
(-4)3的立方根是-4,故说法④正确;
0.1是0.01的一个平方根,故说法⑤错误;
综上,②④正确,
故选:B.
【点睛】
本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键.
7.B
【分析】
延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解.
【详解】
延长,交于点,
BE平分∠ABD,,
,
,∠DEB=80°,
,
,
,
故选B.
【点睛】
本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.
8.A
【分析】
根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第
解析:A
【分析】
根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.
【详解】
根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,
∴物体甲与物体乙的路程比为1:2,
由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,
物体甲运动的路程为,物体乙运动的路程为 ,
此时在BC边相遇,即第一次相遇点为(-1,1);
第二次相遇物体甲与物体乙运动的路程和为 ,
物体甲运动的路程为,物体乙运动的路程为,
在DE边相遇,即第二次相遇点为(-1,-1);
第三次相遇物体甲与物体乙运动的路程和为,
物体甲运动的路程为,物体乙运动的路程为,
在A点相遇,即第三次相遇点为(2,0);
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵ ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1).
故选:A.
【点睛】
本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.
九、填空题
9.0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根
解析:0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根为1.
故答案是:0或1.
【点睛】
考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
十、填空题
10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
十一、填空题
11.【分析】
设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E
解析:
【分析】
设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.
【详解】
解:设D(x,y),
点在第一象限的角平分线上,
,
,,
设直线AB的解析式为:,把,代入得: k=2,
,
,
把代入,得b=-1,
,
点D在上,
,
设直线AD的解析式为:,
可得, ,
,
当x=0时,,
,
故答案为:
【点睛】
此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.
十二、填空题
12.68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF
解析:68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF=∠DEF=56°,
∴∠DEG=112°,
∴∠AEG=180°-112°=68°.
故答案为:68°.
【点睛】
本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.
十三、填空题
13.64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻
解析:64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻折的性质得,∠2(180°﹣∠3)(180°﹣52°)=64°.
故答案为:64.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.
十四、填空题
14.【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故
解析:
【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故答案为:.
【点睛】
本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.
十五、填空题
15.2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离
解析:2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离为:2
故答案为:2
【点睛】
本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.
十六、填空题
16.(1011,﹣1010)
【分析】
求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).
【详解】
解:由题意A1(1
解析:(1011,﹣1010)
【分析】
求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).
【详解】
解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,
可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1,
故=1011,
∴A2021(1011,﹣1010),
故答案为:(1011,﹣1010).
【点评】
本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.
十七、解答题
17.(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=
解析:(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=3+1-6,
=–2.
【点睛】
本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.
十八、解答题
18.(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【
解析:(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【点睛】
本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键.
十九、解答题
19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平
解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平行),
(两直线平行,同旁内角互补),
(已知),
(等式的性质),
(同旁内角互补,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键.
二十、解答题
20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质
解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积.
【详解】
解:(1)平面直角坐标系如图所示:
(2)因为点A(−1,0)落在A′(0,4),同时点P(m,n)落在P′(n,6),
∴,解得,
∴点P的坐标为(1,2);
如图,线段PC扫过的面积即为平行四边形PCC′P′的面积,
∴线段PC扫过的面积为.
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的
解析:(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的值,再代入求解即可.
【详解】
(1)∵4<<5,
∴的整数部分是4,小数部分是 −4,
故答案为:4, −4;
(2)∵2<<3,
∴a=−2,
∵3<<4,
∴b=3,
∴a+b−=−2+3−=1;
(3)∵1<3<4,
∴1<<2,
∴11<10+<12,
∵10+=x+y,其中x是整数,且0<y<1,
∴x=11,y=10+−11=−1,
∴x−y=11−(−1)=12−,
∴x−y的相反数是−12+;
【点睛】
此题考查估算无理数的大小,解题关键在于掌握估算方法.
二十二、解答题
22.(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标
解析:(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标即可.
【详解】
解:(1)正方形的面积,
正方形边长为;
(2)建立如图平面直角坐标系,
则,,,.
【点睛】
本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.
二十三、解答题
23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解
解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
二十四、解答题
24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
二十五、解答题
25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
展开阅读全文