资源描述
数学初二上册期末质量检测试卷答案
一、选择题
1.下面是科学防控新冠知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是( )
A.打喷嚏,捂口鼻 B.戴口罩,讲卫生 C.勤洗于,勤迦风 D.喷嚏后,慎揉眼
2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是( )
A.3.6×10﹣5 B.0.36×10﹣5 C.3.6×10﹣6 D.0.36×10﹣6
3.下列计算正确的是( )
A. B. C. D.
4.若分式的值为0,则x的值为( )
A. B.2 C.2或 D.1
5.下列因式分解正确的是( )
A. B.
C. D.
6.若a≠b,则下列分式变形正确的是( )
A. B. C. D.
7.如图,下列条件中,不能判断△ABD≌△ACD的是( )
A.DB=DC,AB=AC B.∠B=∠C,DB=DC
C.∠B=∠C,∠ADB=∠ADC D.∠ADB=∠ADC,DB=DC
8.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是( )
A.﹣7 B.﹣6 C.﹣5 D.﹣4
9.如图,是的中线,,,则等于( )
A. B. C. D.
10.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.若分式的值为0,则______.
12.若P()和点Q(2,-6)关于y轴对称,则m=___,n=___.
13.已知:,则A+B=_____.
14.若,,则3x﹣2y的值为__.
15.若三角形满足一个角是另一个角的3倍,则称这个三角形为“智慧三角形”,其中称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是______度.
16.若式子是一个含x的完全平方式,则m=______.
17.若x+y=5,xy=2,则x2+y2=_____.
18.已知正△ABC的边长为1,点P,点Q同时从点A出发,点P以每秒1个单位速度沿边AB向点B运动,点Q以每秒4个单位速度沿折线A﹣C﹣B﹣A运动,当点Q停止运动时,点P也同时停止运动.在整个运动过程中,若以点A,B,C中的两点和点Q为顶点构成的三角形与△PAC全等,运动时间为t秒,则t的值为__.
三、解答题
19.把下列多项式因式分解:
(1)
(2)
20.先化简,再求值:,其中x=5.
21.如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE.
22.(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.
(2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE= :
(3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.
(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P= .
23.请阅读某同学解下面分式方程的具体过程:
解分式方程:.
解:,①
,②
,③
∴.④
∴.
把代入原方程检验,得是原方程的解.请回答:
(1)得到①式的做法是_________;得到②式的具体做法是_______;得到③式的具体做法是______________;得到④式的根据是_________.
(2)上述解答正确吗?答:________.错误的原因是_______.(若第一格回答“正确”的,此空不填).
(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).
24.数学家波利亚说过:“为了得到一个方程,我们必须把同一个量一两种不同的方法表示出来,即将一个量算两次,从而建立相等关系,”这就是“算两次”原理,也称为富比尼(G.Fubini)原理,例如:对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.计算如图1的面积,把图1看作一个大正方形,它的面积是(a+b)2;如果把图1看作是由2个长方形和2个小正方形组成的,它的面积为a2+2ab+b2,由此得到(a+b)2=a2+2ab+b2.
(1)如图2,正方形ABCD是由四个边长分别为a,b的长方形和中间一个小正方形组成的,用不同的方法对 图2的面积进行计算,你发现的等式是 (用a,b表示)
(2)应用探索结果解决问题:
已知:两数x,y满足x+y=7,xy=6,求x-y的值.
(3)如图3,四个三角形都是全等的直角三角形,用不同的代数式表示大正方形的面积,由此得到的等式为 ;(用a,b,c表示)
(4)解决问题:若a=n2-1,b=2n,c=n2+1,请通过计算说明a、b、c满足上面结论.
25.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD.
(1)判断与的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.
【参考答案】
一、选择题
2.B
解析:B
【分析】利用轴对称图形的定义进行解答即可.
【详解】解:A、不是轴对称图形,故此选项不符合题意;
B、是轴对称图形,故此选项符合题意;
C、不是轴对称图形,故此选项不符合题意;
D、不是轴对称图形,故此选项不符合题意;
故选:B.
【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
3.C
解析:C
【分析】用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】解:.
故选C.
【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键.
4.A
解析:A
【分析】根据同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法运算法则进行计算即可.
【详解】解:A.,故A符合题意;
B.与不能合并,故B不符合题意;
C.,故C不符合题意;
D.,故D不符合题意;
故选:A.
【点睛】本题考查了同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法,熟练掌握它们的运算法则是解题的关键.
5.A
解析:A
【分析】根据分式值为零且分式有意义的条件求解即可.
【详解】解:∵分式的值为0,
∴(x+1)(x-2)=0,且x2-4x+4≠0,
解得x=-1或x=2,且x≠2,
∴x=-1
故选:A.
【点睛】此题考查了分式值为零的条件,分式有意义的条件,熟记分式的知识是解题的关键.
6.D
解析:D
【分析】分别根据因式分解的定义,提公因式法判断各项即可.
【详解】解:A. ,故此项分解错误,不符合题意;
B. ,是整式的乘法,故不符合题意;
C. ,分解因式最终结果是积的形式,故此选项不符合题意;
D.,分解正确,符合题意,
故选:D
【点睛】本题主要考查了因式分解的定义,提公因式法分解因式,正确运用提取公因式是解题的关键.
7.D
解析:D
【分析】根据分式的基本性质进行判断解答即可.
【详解】解:∵a≠b,
∴A.,此选项错误,不符合题意;
B.,此选项错误,不符合题意;
C.,此选项错误,不符合题意;
D.,此选项正确,符合题意.
故选:D.
【点睛】本题考查分式的基本性质,熟知分式的基本性质:分式的分子和分母同时乘或除以同一个不为零的数或式子,分式的值不变,注意不是同时加或减去一个不为零的数.
8.B
解析:B
【分析】根据全等三角形的判定定理逐一判断即可.
【详解】解:A、DB=DC,AB=AC,AD=AD,根据SSS可以证明△ABD≌△ACD,故本选项不符合题意;
B、AD=AD,DB=DC,∠B=∠C,根据SSA不能证明△ABD≌△ACD,故本选项符合题意;
C、∠B=∠C,∠ADB=∠ADC,AD=AD,根据AAS可以证明△ABD≌△ACD,故本选项不符合题意;
D、AD=AD,∠ADB=∠ADC,BD=CD,根据SAS可以证明△ABD≌△ACD,故本选项不符合题意;
故选:B.
【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题难度适中.
9.D
解析:D
【分析】根据二次根式有意义,可得,解出关于的分式方程 的解为,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.
【详解】解:去分母得,,
解得,,
∵关于x的分式方程有正数解,
∴ ,
∴,
又∵是增根,当时,
,即,
∴,
∵有意义,
∴,
∴,
因此 且,
∵m为整数,
∴m可以为-4,-2,-1,0,1,2,其和为-4,
故选:D.
【点睛】考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,解题的关键是理解正数解,整数m的意义.
10.C
解析:C
【分析】根据直角三角形斜边.上的中线性质得出,从而得出,根据等腰三角形的性质得出,再根据三角形外角的性质可得,代入数据即可得出答案..
【详解】解:∵是的中线,,
∴,,
∴,
∴,
∵,,
∴,
∴.
故选:C.
【点睛】本题考查了直角三角形斜边上中线的性质,三角形外角性质和等腰三角形的性质等知识点,注意:直角三角形斜边上的中线等于斜边的一半.理解和掌握直角三角形斜边上中线的性质是解题的关键.
11.C
解析:C
【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,
故选C.
【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
二、填空题
12.-1
【分析】根据分式的值为零的条件即可求出x的值.
【详解】解:由题意可知:|x|-1=0且x-1≠0,
解得x=-1.
故答案为:-1.
【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.
13. 0 -1
【分析】利用关于y轴对称的点的性质得出关于m,n的方程组,求解即可得出答案.
【详解】解:∵P(,)和点Q(2,﹣6)关于y轴对称,
∴,解得.
故答案为:0,-1.
【点睛】此题主要考查了关于y轴对称的点的性质,正确理解关于坐标轴对称的点的性质是解题的关键.
14.A
解析:3
【分析】根据分式的加减运算将右边的分式合并之后,运用待定系数法建立关于A,B的方程组求解即可.
【详解】解:,
,解得:.
故答案为:3.
【点睛】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.
15.
【分析】根据即可代入求解.
【详解】解:.
故答案是:.
【点睛】本题考查了同底数的幂的除法运算,正确理解是关键.
16.60或90##90或60
【分析】根据“智慧三角形”及“智慧角”的定义,列方程求解即可.
【详解】解:在有一个角为60°的三角形中,
①当“智慧角”α=60°时,β=20°,另一个角为100
解析:60或90##90或60
【分析】根据“智慧三角形”及“智慧角”的定义,列方程求解即可.
【详解】解:在有一个角为60°的三角形中,
①当“智慧角”α=60°时,β=20°,另一个角为100°;
②当α+β=180°-60°=120°且α=3β时,
则3β+β=120°,
解得β=30°,
∴α=90°,
即“智慧角”是90°,
故答案为:60或90
【点睛】本题主要考查了三角形的内角和定理,掌握“三角形的内角和是180°”和“智慧三角形”、“智慧角”的定义是解决本题的关键.
17.【分析】由式子是一个含x的完全平方式,可得从而可得答案.
【详解】解: 是一个含x的完全平方式,
故答案为:
【点睛】本题考查的是完全平方式的应用,掌握“完全平方式的特点
解析:
【分析】由式子是一个含x的完全平方式,可得从而可得答案.
【详解】解: 是一个含x的完全平方式,
故答案为:
【点睛】本题考查的是完全平方式的应用,掌握“完全平方式的特点”是解本题的关键.
18.21
【分析】原式利用完全平方公式变形,把已知等式代入计算求值即可.
【详解】解:∵,
∴将和代入,得:.
故答案为:21.
【点睛】本题考查完全平方公式和代数式求值,解题的关键是利用完全
解析:21
【分析】原式利用完全平方公式变形,把已知等式代入计算求值即可.
【详解】解:∵,
∴将和代入,得:.
故答案为:21.
【点睛】本题考查完全平方公式和代数式求值,解题的关键是利用完全平方公式将原式变形.
19.或或或或
【分析】分三种情形:当点Q在AC上时,当点Q在BC上时,有两种情形,CQ=AP或BQ=PA满足条件,当点Q在BA上时,Q与P重合或AP=QB满足条件,分别构建方程求解即可.
【详解】解
解析:或或或或
【分析】分三种情形:当点Q在AC上时,当点Q在BC上时,有两种情形,CQ=AP或BQ=PA满足条件,当点Q在BA上时,Q与P重合或AP=QB满足条件,分别构建方程求解即可.
【详解】解:当点Q在AC上时,CQ=PA时,△BCQ≌△CAP,AP=t,AQ=4t,CQ=1-4t;
此时t=1﹣4t,解得t=.
当点Q在BC上时,有两种情形,CQ=AP时,△ACQ≌△CAP,AP=t, CQ=4t -1, BQ=2-4t;
∴4t﹣1=t,解得 t=;
BQ=PA时,△ABQ≌△CAP,
∴2﹣4t=t,
解得t=,
当点Q在BA上时,有两种情形,Q与P重合,△ACQ≌△ACP,AP=t,AQ=3-4t,BQ=4t -2;
∴t=3-4t,解得t=;
AP=QB时,△ACP≌△BCQ,
t=4t﹣2,
解得t=,
综上所述,满足条件的t的值为或或或或,
故答案为:或或或或.
【点睛】本题考查全等三角形的判定,等边三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.
三、解答题
20.(1)
(2)
【分析】(1)利用提取公因式法来求解;
(2)先提取公因式-8,再利用完全平方公式求解.
(1)
解:
;
(2)
解:
.
【点睛】本题主要考查了因
解析:(1)
(2)
【分析】(1)利用提取公因式法来求解;
(2)先提取公因式-8,再利用完全平方公式求解.
(1)
解:
;
(2)
解:
.
【点睛】本题主要考查了因式分解,理解提取公因式法和公式法是解答关键.
21.﹣6﹣2x,﹣16.
【分析】括号内通分并结合平方差公式化简,再进行乘法计算约分即可.
【详解】解:
当x=5时,原式.
【点睛】本题考查分式的化简求值.掌握分式的混合
解析:﹣6﹣2x,﹣16.
【分析】括号内通分并结合平方差公式化简,再进行乘法计算约分即可.
【详解】解:
当x=5时,原式.
【点睛】本题考查分式的化简求值.掌握分式的混合运算法则是解题关键.
22.见解析
【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE.
【详解】证明:∵AB⊥CB,DC⊥CB,
∴∠B=∠C=90°,
∵BE=CF
解析:见解析
【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE.
【详解】证明:∵AB⊥CB,DC⊥CB,
∴∠B=∠C=90°,
∵BE=CF,
∴BF=CE,且∠A=∠D,∠B=∠C=90°,
∴△ABF≌△DCE(AAS),
∴AF=DE,
【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.
23.(1)15°;(2);(3)结论应成立.(4).
【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用
解析:(1)15°;(2);(3)结论应成立.(4).
【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用AD⊥BC,得出∠BAD=90°-∠B=90°-70°=20°,然后用角的差计算即可;
(2)根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠EAC=,利用FD⊥BC,可得∠DFE+∠FED=90°,根据∠FED是△AEC的外角,可求∠FED=∠C+∠EAC=,利用余角求解即可;
(3)结论应成立.过点A作AG⊥BC于G,根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠BAE=,根据AG⊥BC,得出∠BAG=90°-∠B=90°-,可求∠GAE=∠BAE-∠BAG==,根据FD⊥BC,AG⊥BC,可证AG∥FD,利用平行线性质即可求解;
(4)设AF与PD交于H,根据FD⊥BC,PD平分∠EDF,得出∠HDF=,根据PA平分∠BAE,∠BAE=,得出∠PAE=,根据对顶角性质∠AHP=∠FHD,结合三角形内角和得出∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+,求出∠P即可.
【详解】解:(1)∵∠B=70°,∠C=40°,
∴∠BAC=180°-∠B-∠C=180°-70°-40°=70°,
∵AE平分∠BAC,
∴∠BAE=,
∵AD⊥BC,
∴∠BDA=90°,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-70°=20°,
∴∠DAE=∠BAE-∠BAD=35°-20°=15°;
(2)∵∠B=x,∠C=y,
∴∠BAC=180°-∠B-∠C=180°- x-y,
∵AE平分∠BAC,
∴∠EAC=,
∵FD⊥BC,
∴∠EDE=90°,
∴∠DFE+∠FED=90°,
∵∠FED是△AEC的外角,
∴∠FED=∠C+∠EAC=,
∴∠DFE=90°-∠FED=,
故答案为:;
(3)结论应成立.
过点A作AG⊥BC于G,
∵∠B=x,∠C=y,
∴∠BAC=180°-∠B-∠C=180°- x-y,
∵AE平分∠BAC,
∴∠BAE=,
∵AG⊥BC,
∴∠AGB=90°,
∴∠B+∠BAG=90°,
∴∠BAG=90°-∠B=90°-,
∴∠GAE=∠BAE-∠BAG==,
∵FD⊥BC,AG⊥BC,
∴AG∥FD,
∴∠EFD=∠GAE=
(4)设AF与PD交于H,
∵FD⊥BC,PD平分∠EDF,
∴∠HDF=,
∵PA平分∠BAE,∠BAE=,
∴∠PAE=,
∵∠AHP=∠FHD,∠EFD=
∴∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+,
∴∠P=,
故答案为:.
【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键.
24.(1)移项;通分;方程两边同除以(-2x+10);分式值相等,分子相等,则分母相等.
(2)不正确;-2x+10有可能等于0,
(3)见解析
【分析】(1)根据解分式方程的步骤逐步分析判断即可
解析:(1)移项;通分;方程两边同除以(-2x+10);分式值相等,分子相等,则分母相等.
(2)不正确;-2x+10有可能等于0,
(3)见解析
【分析】(1)根据解分式方程的步骤逐步分析判断即可求解;
(2)根据解分式方程的过程即可求解;
(3)根据分式方程特点进行整理,然后去分母将分式方程化为整式求解.
(1)
解:(1)根据题目可得出:得到①式的做法是移项;得到②式的具体做法是通分;得到③式的具体做法是方程两边同除以(-2x+10);得到④式的根据是分式值相等,分子相等,则分母相等.
故答案为:移项;通分;方程两边同除以(-2x+10);分式值相等,分子相等,则分母相等.
(2)
不正确,从第③步出现错误,
原因:-2x+10有可能等于0,
故答案为:不正确;-2x+10有可能等于0;
(3)
当-2x+10=0时,即:x=5,
经检验:x=5也是原方程的解,
故原方程的解为:x=5,x=
【点睛】本题考查解分式方程,关键在于要根据分式方程特点,选择合适的方法,考虑要全面,不能漏解,不能出现增根情况.
25.(1)(a+b)²=(a-b)²+4ab
(2)±5
(3)c²=2ab+(a-b)²
(4)见解析
【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成
解析:(1)(a+b)²=(a-b)²+4ab
(2)±5
(3)c²=2ab+(a-b)²
(4)见解析
【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成,分别表示出面积可得等式;
(2)根据(1)中所得等式,代入计算即可;
(3)可以把图3看作一个大正方形,也可以看作是由4个全等的直角三角形和1个小正方形组成,分别表示出面积可得等式;
(4)分别求出a²,b²,c²,然后进行计算即可.
(1)
解:把图2看作一个大正方形组成,面积为(a+b)²,把图2看作是由4个长方形和1个小正方形组成,面积为:(a-b)²+4ab,
故发现的等式是:(a+b)²=(a-b)²+4ab;
(2)
解:由(1)得(a+b)²=(a-b)²+4ab,
∴(x+y)²=(x-y)²+4xy,
∵x+y=7,xy=6,
∴7²=(x-y)²+24,
∴x-y=±5;
(3)
解:把图3看作一个大正方形,面积为c²,把图3看作是由4个全等的直角三角形和1个小正方形组成,面积为:+(a-b)²=2ab+(a-b)²,
故发现的等式是:c²=2ab+(a-b)²;
(4)
解:∵a=n2-1,b=2n,c=n2+1,
∴a²=(n²-1)²=n⁴+1-2n²,b²=(2n)²=4n²,c²=(n²+1)²=n⁴+1+2n²,
∴a²+b²=n⁴+2n²+1=c²,
∴a²+b²=c²,
∴(a+b)²-2ab=c²,
∴c²=(a-b)²+2ab.
【点睛】本题主要考查了完全平方公式的几何背景,解题时注意数形结合思想的运用.
26.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
27.(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关
解析:(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关系是:,数量关系是.
理由如下:
如图1,延长交于点.
于,
.
,,
,
,,.
,
.
AE⊥BC
∴,
,
.
(2)与的位置关系是:,数量关系是.
如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,
,
,
即.
,,
,
,.
AE⊥BC
∴,
又∵
,
.
(3)如图,线段AC与线段BD交于点F,
和是等边三角形,
,,,,
,
,
在和中,
,
∴,
,
与的夹角度数为.
【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.
展开阅读全文