资源描述
西安高新一中沣东中学八年级上册期末数学试卷
一、选择题
1、下列图形是轴对称图形的为( )
A. B. C. D.
2、进入寒冷的腊月,云南多地下起了小雪,据测定,某雪花的直径约为0.0000015米,将数据0.0000015用科学记数法表示为( )
A. B. C. D.
3、已知2m+3n=5,则4m•8n=( )
A.10 B.16 C.32 D.64
4、要使分式有意义,那么的取值范围是( )
A. B.且 C.且 D.
5、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
6、下列计算错误的是( )
A. B.
C. D.
7、如图,点E、H、G、N共线,∠E=∠N,EF=NM,添加一个条件,不能判断△EFG≌△NMH的是( )
A.EH=NG B.∠F=∠M C.FG=MH D.
8、已知关于的分式方程的解为正数,则的取值范围是( )
A. B.且
C. D.且
9、三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点在的延长线上,点在上,,,,当边与射线所夹的锐角为时,则:①AB∥CF;②;③;④点和点到的距离相等.以上四个结论正确的有几个( )
A.个 B.个 C.个 D.个
二、填空题
10、如图, 为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接,以下五个结论:①,②,③,④,⑤,一定成立的是( )
A.①②③④
B.①②④⑤
C.①②③⑤
D.①③④⑤
11、若的值为零,则的值为______.
12、点P(1,-2)关于x轴的对称点的坐标为__________.
13、若,且m≠0,则的值为______.
14、计算______.
15、如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为_________.
16、已知关于x的二次三项式 是完全平方式,则常数k的值为_____.
17、若x+y=5,xy=2,则x2+y2=_____.
18、如图,已知ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当BPD与CQP全等时,则点Q运动速度可能为_____厘米/秒.
三、解答题
19、分解因式:
(1)
(2)16-8(x-y)+(x-y)2
20、解分式方程.
21、如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD.求证:BC=ED.
22、已知在四边形ABCD中,.
(1)如图1,若BE平分,DF平分的邻补角,请写出BE与DF的位置关系并证明;
(2)如图2,若BF、DE分别平分、的邻补角,判断DE与BF位置关系并证明;
(3)如图3,若BE、DE分别五等分、的邻补角(即,),求度数.
23、请仿照例子解题:
恒成立,求M、N的值.
解:∵,∴
则,即
故,解得:
请你按照.上面的方法解题:若恒成立,求M、N的值.
24、若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,
我们称这样的数k为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F(k)=.
(1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ;
(2)证明:对于任意的四位“言唯一数”m,m+m'能被11整除;
(3)设四位“言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y均为整数),若F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.
25、如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)证明:△ABE为等边三角形;
(2)若CD⊥AB于点F,求线段CD的长;
(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?
一、选择题
1、D
【解析】D
【分析】根据轴对称图形的定义逐一判断即可.
【详解】解:A、不是轴对称图形,故不符合题意;
B、不是轴对称图形,故不符合题意;
C、不是轴对称图形,故不符合题意;
D、是轴对称图形,故符合题意;
故选:D.
【点睛】本题考查轴对称图形的识别,熟记轴对称图形的定义是解题关键.
2、C
【解析】C
【分析】结合题意,根据科学记数法和负整数指数幂的性质计算,即可得到答案.
【详解】数据0.0000015用科学记数法表示为:
故选:C.
【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握科学记数法定义:科学记数法是指把一个数表示成形式,其中n为整数,且a满足1≤|a|<10;对小于1的数,用科学记数法表示为的形式.
3、C
【解析】C
【分析】根据幂的乘方以及同底数幂的乘法()则解答即可.
【详解】∵、均为正整数,且,
∴,
故选:C.
【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.
4、D
【解析】D
【分析】根据分式有意义的条件列出关于的不等式,求解即可.
【详解】解:,
,
,
,
分式有意义,的取值范围,
故选:D.
【点睛】本题考查了分式有意义的条件:分母不为,掌握不等式的解法是解题的关键.
5、C
【解析】C
【分析】将一个多项式写成几个整式的积的形式,叫将多项式因式分解,根据定义依次判断即可.
【详解】解:A.是单项式乘以单项式的逆运算,故不符合题意;
B.不符合因式分解定义,故不符合题意;
C.符合因式分解定义,故符合题意;
D.是整式乘法,不不符合定义;
故选:C.
【点睛】此题考查了因式分解的定义,正确理解多项式因式分解的形式是解题的关键.
6、D
【解析】D
【分析】分别把各选项根据分式的基本性质和分式的运算法则计算得到结果即可作出判断.
【详解】解:A. ,故选项A计算正确,不符合题意;
B. ,故选项B计算正确,不符合题意;
C. ,故选项C计算正确,不符合题意;
D. ,故选项D运算错误,符合题意;
故选:D.
【点睛】本题主要考查了分式的基本性质和分式的运算法则,熟练掌握基本性质和运算法则是解答本题的关键.
7、C
【解析】C
【分析】根据全等三角形的判定定理,即可一一判定.
【详解】解:在△EFG与△NMH中,已知,∠E=∠N,EF=NM,
A.由EH=NG可得EG=NH,所以添加条件EH=NG,根据SAS可证△EFG≌△NMH,故本选项不符合题意;
B.添加条件∠F=∠M,根据ASA可证△EFG≌△NMH,故本选项不符合题意;
C.添加条件FG=MH,不能证明△EFG≌△NMH,故本选项符合题意;
D.由可得∠EGF=∠NHM,所以添加条件,根据AAS可证△EFG≌△NMH,故本选项不符合题意;
故选:C.
【点睛】本题考查了全等三角形的判定定理,熟练掌握和运用全等三角形的判定定理是解决本题的关键.
8、D
【解析】D
【分析】先解分式方程,令其分母不为零,再根据题意令分式方程的解大于等于0,综合得出m的取值范围.
【详解】解:根据题意解分式方程,得x=,
∵2x−1≠0,
∴x≠,即≠,
解得m≠−3,
∵x>0,
∴>0,解得m>−4,
综上,m的取值范围是m>−4且m≠−3,
故选:D.
【点睛】本题考查分式方程的解和解一元一次不等式,需要注意分式方程的解要使得分母不为0.
9、D
【解析】D
【分析】先根据判定AB∥FC,然后根据垂直的定义得出,进而求出,再利用外角的性质求出.
【详解】解:如图,
,
∴AB∥FC,故正确;
,
,
,故正确;
,,
,故正确;
平行线间的距离处处相等,且AB∥FC,
∴点和点到的距离相等,故正确.
故正确的结论有个,
故选:D.
【点睛】本题考查的是平行线的性质和三角形外角的性质,解题的关键是熟练掌握平行线的性质并灵活运用,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
二、填空题
10、B
【解析】B
【分析】根据等边三角形的性质可以得出E△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°,就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根据∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,进而得出结论.
【详解】解:∵△ACD和△BCE是等边三角形,
∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.
∵∠ACB=180°,
∴∠DCE=60°.
∴∠DCE=∠BCE.
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB.
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC.
在△CEG和△CBH中,
,
∴△CEG≌△CBH(ASA),
∴CG=CH,GE=HB,
∴△CGH为等边三角形,
∴∠GHC=60°,
∴∠GHC=∠BCH,
∴GH//AB.
∵∠AFD=∠EAB+∠CBD,
∴∠AFD=∠CDB+∠CBD=∠ACD=60°.
∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60°
∴∠DCH≠∠DHC,
∴CD≠DH,
∴AD≠DH.
综上所述,正确的有:①②④⑤.
故选B.
【点睛】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.
11、2
【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.
【详解】解:∵分式的值为零,
∴=0且x+2≠0,
即=0且x≠-2,
解得:x=1、
故答案为:1、
【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键.
12、(1,2)
【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】解:点P(1,-2)关于x轴的对称点的坐标是(1,2).
故答案为:(1,2).
【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
13、3
【分析】先通分把原分式化为,再整体代入求值即可.
【详解】解:∵,
∴
故答案为:3
【点睛】本题考查的是利用条件式求解分式的值,掌握“整体代入法求解分式的值”是解本题的关键.
14、125##18
【分析】先把原式变为,再根据积的乘方的逆运算求解即可.
【详解】解:
,
故答案为:0.124、
【点睛】本题主要考查了积的乘方的逆运算,熟知积的乘方的逆运算是解题的关键.
15、10
【分析】首先连接PB,由中垂线的性质可得PB=PC,由于△APC的周长为AC+PA+PC,AC长度固定,则只要PA+PB最小即可,此时可推出P、A、B三点共线,即PA+PB=AB,由此计算即可
【解析】10
【分析】首先连接PB,由中垂线的性质可得PB=PC,由于△APC的周长为AC+PA+PC,AC长度固定,则只要PA+PB最小即可,此时可推出P、A、B三点共线,即PA+PB=AB,由此计算即可.
【详解】解:如图,连接PB,则由中垂线的性质可得PB=PC,
∵△APC的周长=AC+PA+PC,
∴△APC的周长=AC+PA+PB,
∵AC=4,
∴要使得△APC的周长最小,使得PA+PB最小即可,
根据两点之间线段最短,可知当P、A、B三点共线时,PA+PB最小,
此时,P点在AB边上,PA+PB=AB=6,
∴PA+PB的最小值为6,
∴△APC的周长最小为:6+4=10,
故答案为:9、
【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键.
16、±6
【分析】利用完全平方公式的结构特征判断即可.
【详解】解:∵关于x的二次三项式是完全平方式,
∴;,
则常数k的值为±5、
故答案为:±5、
【点睛】此题考查了完全平方式,熟练掌握完全平方公式
【解析】±6
【分析】利用完全平方公式的结构特征判断即可.
【详解】解:∵关于x的二次三项式是完全平方式,
∴;,
则常数k的值为±5、
故答案为:±5、
【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
17、21
【分析】原式利用完全平方公式变形,把已知等式代入计算求值即可.
【详解】解:∵,
∴将和代入,得:.
故答案为:20、
【点睛】本题考查完全平方公式和代数式求值,解题的关键是利用完全平方公式将
【解析】21
【分析】原式利用完全平方公式变形,把已知等式代入计算求值即可.
【详解】解:∵,
∴将和代入,得:.
故答案为:20、
【点睛】本题考查完全平方公式和代数式求值,解题的关键是利用完全平方公式将原式变形.
18、1或1.6
【分析】根据,推出当BPD与CQP全等时,存在两种情况,①②,设运动时间为秒,点的运动速度为厘米/秒,则 cm, cm, cm,再根据全等三角形对应边相等的性质解答即可.
【详解】解:∵
【解析】1或1.6
【分析】根据,推出当BPD与CQP全等时,存在两种情况,①②,设运动时间为秒,点的运动速度为厘米/秒,则 cm, cm, cm,再根据全等三角形对应边相等的性质解答即可.
【详解】解:∵
∴当BPD与CQP全等时,存在两种情况,①②
设运动时间为秒,点的运动速度为厘米/秒,则 cm, cm, cm
∵点是中点,cm
∴ cm
当时,
∴,解得:
当时,、
∴,解得:
综上所述:点Q运动速度可能为1厘米/秒或厘米/秒.
故答案为:1或.
【点睛】本题考查了全等三角形对应边相等、对应角相等的性质,根据对应角相等分情况讨论是解答本题的关键.
三、解答题
19、(1)
(2)
【分析】(1)先提公因式x,再利用完全平方公式分解因式;
(2)根据完全平方公式分解即可.
(1)
解:原式=
=
(2)
解:原式=.
【解析】(1)
(2)
【分析】(1)先提公因式x,再利用完全平方公式分解因式;
(2)根据完全平方公式分解即可.
(1)
解:原式=
=
(2)
解:原式=.
【点睛】此题考查了因式分解:将一个多项式写成几个整式的积的形式,叫将多项式分解因式,熟记因式分解的定义并掌握因式分解的方法是解题的关键.
20、【分析】按照去分母,解整式方程,检验的步骤解方程即可.
【详解】去分母得,
去括号合并同类项得,
系数化为1得,
经检验,是原分式方程的解.
【点睛】本题主要考查解分式方程,掌握解分式方程的步骤
【解析】
【分析】按照去分母,解整式方程,检验的步骤解方程即可.
【详解】去分母得,
去括号合并同类项得,
系数化为1得,
经检验,是原分式方程的解.
【点睛】本题主要考查解分式方程,掌握解分式方程的步骤并检验是否为增根是解题的关键.
21、见解析
【分析】利用AAS定理证明△ACB≌△CED,根据全等三角形的对应边相等证明即可.
【详解】证明:∵AB∥CD,
∴∠BAC=∠ECD,
在△ABC和△CED中,
,
∴△ACB≌△CED
【解析】见解析
【分析】利用AAS定理证明△ACB≌△CED,根据全等三角形的对应边相等证明即可.
【详解】证明:∵AB∥CD,
∴∠BAC=∠ECD,
在△ABC和△CED中,
,
∴△ACB≌△CED(AAS),
∴BC=ED.
【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
22、(1),证明见解析;(2),证明见解析;(3)54°
【分析】(1)结论:BE⊥DF,如图1中,延长BE交FD的延长线于G,证明∠DEG+∠EDG=90°即可;
(2)结论:DE//BF,如图2中,
【解析】(1),证明见解析;(2),证明见解析;(3)54°
【分析】(1)结论:BE⊥DF,如图1中,延长BE交FD的延长线于G,证明∠DEG+∠EDG=90°即可;
(2)结论:DE//BF,如图2中,连接BD,只要证明∠EDB+∠FBD=180°即可;
(3)延长DC交BE于H.由(1)得:,利用五等分线的定义可求,由三角形的外角性质得,代入数值计算即可.
【详解】(1).
证明:延长BE、FD交于G.在四边形ABCD中,
,,
.
,.
平分,DF平分,
,,
,
∵∠ABE+∠AEB=90°,∠AEB=∠DEG,∠FDN=∠EDG,
∴∠DEG+∠EDG=90°,
∴∠EGD=90°,即BE⊥DF.
(2).
证明:连接DB.
,.
又,.
、DF平分、的邻补角,
,,
.
在中,
,
,
,.
(3)延长DC交BE于H.由(1)得:
.
、DE分别五等分、的邻补角,
,
由三角形的外角性质得,
,,
,
.
【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.
23、M、N的值分别为,
【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值.
【详解】解:∵,
∴
即
故,
解得
答:M、N
【解析】M、N的值分别为,
【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值.
【详解】解:∵,
∴
即
故,
解得
答:M、N的值分别为,.
【点睛】此题考查了分式混合运算,解题的关键是读懂例题的解法并熟练运用分式运算法则.
24、(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和
【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的
【解析】(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和
【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k为“言唯一数”,解答即可.
【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ;
(2)证明:设,则
都为正整数,则也是正整数
对于任意的四位“言唯一数”,能被整除.
(3) (,且,、均为整数)
.
则
仍然为言唯一数, 末尾数字为0,129末尾数字为9
则的末尾数字为2,
或
①当时,,
时,,此时
②当时,,
时,,此时
满足条件的所有的四位“言唯一数”为和
【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键.
25、(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;
(2)由(1)知∠ABE=∠
【解析】(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;
(2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30°,∠D=30°,同理得出CF、DF的长,进而可得出结论.
(3)设运动的时间为t秒.然后分四种情况讨论:①当点P、Q分别在y轴、x轴上时,;②当点P、Q都在y轴上时,;③当点P在x轴上,Q在y轴且二者都没有提前停止时,;④当点P在x轴上,Q在y轴且点Q提前停止时,,列方程求解即可.
【详解】(1)在△AOB与△EOB中,∵∠AOB=∠EOB,OB=OB,∠EBO=∠ABO,∴△AOB≌△EOB (ASA),∴AO=EO=3,BE=AB=6,∴AE=BE=AB=6,∴△ABE为等边三角形.
(2)由(1)知∠ABE=∠BEA=∠EAB=60°.
∵CD⊥AB,∴∠AOF=30°,∴AF=.
在Rt△AOF中,OF=.
∵∠CAH=∠BAO =60°,∴∠CAF =60°,∠ACF=∠AOF=30°,∴AO=AC.
又∵CD⊥AB,∴CF=.
∵AB=6,AF=,∴BF=.
在Rt△BDF中,∠DBF =60°,∠D=30°,∴BD=.
由勾股定理得:∴DF=,∴CD=.
(3)设运动的时间为t秒.
①当点P、Q分别在y轴、x轴上时,,PO=QO得:,解得:(秒);
②当点P、Q都在y轴上时,,PO=QO得:,解得(秒);
③当点P在x轴上,Q在y轴且二者都没有提前停止时,,则PO=QO,得:,解得:,不合题意,舍去.
④当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒).
综上所述:当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【点睛】本题考查了全等三角形的判定、含30°角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质.正确分类讨论是解题的关键.
展开阅读全文