1、人教版七年级下册数学期末综合复习试卷含答案优秀一、选择题1如图,下列说法正确的是( )A与是同位角B与是内错角C与是同旁内角D与是同位角2下列四幅名车标志设计中能用平移得到的是( )A奥迪B本田C奔驰D铃木3在平面直角坐标系中位于第二象限的点是( )ABCD4下列命题是假命题的是( )A两个角的和等于平角时,这两个角互为补角B内错角相等C两条平行线被第三条直线所截,内错角相等D对顶角相等5若的两边与的两边分别平行,且,那么的度数为( )ABC或D或6下列算式,正确的是( )ABCD7如图,和相交于点O,则下列结论正确的是( )ABCD8在平面直角坐标系中,对于点P(x,y),我们把点P(1y,
2、x1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到点A1、A2、A3、A4,若点A1的坐标为(3,2),则点A2020的坐标为()A(3,2)B(1,2)C(1,2)D(3,2)九、填空题9如果,的平方根是,则_十、填空题10点(3,0)关于y轴对称的点的坐标是_十一、填空题11如图,已知AD是ABC的角平分线,CE是ABC的高,BAC=60,BCE=40,则ADB=_十二、填空题12如图:已知ABCD,CEBF,AEC45,则BFD_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点
3、D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14对于有理数x、y,当xy时,规定xy=yx;而当xy时,规定xy=y-x,那么4(-2)=_;如果(-1)1m=36,则m的值为_十五、填空题15如果点P(m+3,m2)在x轴上,那么m_十六、填空题16在平面直角坐标系中,按照此规律排列下去,点的坐标为_十七、解答题17计算:(1)利用平方根意义求x值: (2)十八、解答题18求下列各式中的x值:(1)(2)十九、解答题19如图,试说明证明:(已知)_=_(垂直定义)_/_(_)(_)_/_(_)_(平行于同一直线的两条直线互相平行)(_)二十、解答题20如图
4、,在平面直角坐标系中,已知三角形三点的坐标分别为,(1)求三角形的面积;(2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标二十一、解答题21阅读材料,解答问题:材料:即,的整数部分为2,小数部分为问题:已知的立方根是3,的算术平方根是4,c是的整数部分(1)求的小数部分(2)求的平方根二十二、解答题22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23已知
5、,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系二十四、解答题24如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由二十五、解答题25已
6、知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1B解析:B【分析】根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样
7、一对角叫做同旁内角可得答案【详解】解:3与1是同位角,C与1是内错角,2与3是邻补角,B与3是同旁内角,B选项正确,故选:B【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形2A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得解析:A【分析】根据平移的概
8、念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得到的,故的符合题意;C、不是经过平移得到的,故不符合题意;D、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限
9、的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据内错角、对顶角、补角的定义一一判断即可【详解】解:A、两个角的和等于平角时,这两个角互为补角,为真命题;B、两直线平行,内错角相等,故错误,为假命题;C、两条平行线被第三条直线所截,内错角相等,为真命题;D、对顶角相等,为真命题;故选:B【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题5A【分析】根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案【详解】解:当B的两边与A的两边如图一所示时,则BA,又BA20,
10、A20A,此方程无解,此种情况不符合题意,舍去;当B的两边与A的两边如图二所示时,则AB180;又BA20,A20A180,解得:A80;综上所述,的度数为80,故选:A【点睛】本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案6A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案【详解】A.,计算正确,故该选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7A【分析】根据对顶角的性质和
11、平行线的性质判断即可【详解】解:A、和是对顶角,选项正确,符合题意;B、与OB相交于点A,与OB不平行,选项错误,不符合题意;C、AO与BC相交于点B,AO与BC不平行,选项错误,不符合题意;D、OD与BC相交于点C,OD与BC不平行,,选项错误,不符合题意故选:A【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质对顶角相等8D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A1的坐标为
12、(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),以此类推,每4个点为一个循环,20204=505,点A2020的坐标与A4的坐标相同,为(3,-2)故选D.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题
13、意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题10(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0)故答案为:(-3,0).【点睛】本题考查
14、平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题11100【分析】根据AD是ABC的角平分线,CE是ABC的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADB解析:100【分析】根据AD是ABC的角平分线,CE是ABC的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADBBCE+ACE+CAD,从而求得ADB的度数【详解】解:AD是A
15、BC的角平分线,BAC60BADCADBAC30, CE是ABC的高,CEA90CEA+BAC+ACE180ACE30ADBBCE+ACE+CAD,BCE40ADB40+30+30100故答案为:100【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案十二、填空题1245【分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出BFD【详解】解:ABCD,ECDAEC,CEBF,BFDECD,解析:45【分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出BFD【详解】解
16、:ABCD,ECDAEC,CEBF,BFDECD,BFDAEC,AEC45,BFD45故答案为:45【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键十三、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了
17、长方形的性质,折叠的性质,关键是利用折叠的性质得出DEFD1EF解答十四、填空题14或 【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=解析:或 【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=2m=36当时,原式可化为解得:;当时,原式可化为:解得:;综上所述,m的值为:或;故答案为:16;或【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键十五、填空题15【
18、分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐解析:【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为
19、,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键十七、解答题17(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛解析:(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化
20、简,掌握以上知识是解题的关键十八、解答题18(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解得:x=8或x=-4【点睛】本题考查了立方根和平方根正数的立方根是正数,0的立方根是0,负数的立方根是负数即任意数都有立方根十九、解答题19,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等
21、【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质证得结论,据此填空即可【详解】解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质证得结论,据此填空即可【详解】证明:(已知),(垂直定义),(同位角相等,两直线平行),(已知),(内错角相等,两直线平行),(平行于同一直线的两条直线互相平行),(两直线平行,同位角相等)故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等【点睛】本题考查了平行线的判定与
22、性质,熟练掌握性质及判定定理是解题的关键二十、解答题20(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可解析:(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可得:;(2)设点,由题意得:,的面积以点B的纵坐标为高,ON为底,即,或【点睛】本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键二十一、解答题2
23、1(1);(2)【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可【详解】(1)即,的整数部分为3,小数部分为,解析:(1);(2)【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可【详解】(1)即,的整数部分为3,小数部分为,的小数部分为;(2)的立方根是3,的算术平方根是4,c是的整数部分,的平方根是【点睛】本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可二十二、解答题22(1)
24、 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用
25、,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BF
26、D;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所
27、以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十四、解答题24(1)10
28、秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3t,则AOC=30+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON
29、=60,t=603=20经过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:AON+BOM=90,BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)
30、=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键二十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2A
31、BF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,C
32、DFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(
33、3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解