收藏 分销(赏)

人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc

上传人:快乐****生活 文档编号:1861612 上传时间:2024-05-10 格式:DOC 页数:25 大小:656.04KB
下载 相关 举报
人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc_第1页
第1页 / 共25页
人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc_第2页
第2页 / 共25页
人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc_第3页
第3页 / 共25页
人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc_第4页
第4页 / 共25页
人教版中学七7年级下册数学期末综合复习试卷含答案优秀.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、人教版中学七7年级下册数学期末综合复习试卷含答案优秀一、选择题1“9的平方根”这句话用数学符号表示为()ABCD2下列车标图案,可以看成由图形的平移得到的是( )ABCD3若点在第四象限内,则点的坐标可能是( )ABCD4下列语句中:同角的补角相等;雪是白的;画;他是小张吗?两直线相交只有一个交点其中是命题的个数有( )A1个B2个C3个D4个5如图,点为上方一点,分别为的角平分线,若,则的度数为( )ABCD6有个数值转换器,原理如图所示,当输入为27时,输出的值是( )A3BCD327如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则1的度数为( )A

2、45B125C55D358在平面直角坐标系中,点A(1,0)第一次向左跳动至A1(1,1),第二次向右跳至A2(2,1),第三次向左跳至A3(2,2),第四次向右跳至A4(3,2),按照此规律,点A第2021次跳动至A2021的坐标是( )A(1011,1011)B(1011,1010)C(1010,1010)D(1010,1009)九、填空题9如果,的平方根是,则_十、填空题10已知点在第四象限,则点A关于y轴对称的坐标是_.十一、填空题11如图,在中,的角平分线与的外角角平分线交于点E,则_度十二、填空题12已知,且,请直接写出、的数量关系_十三、填空题13在“妙折生平折纸与平行”的拓展课

3、上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为_度十四、填空题14如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是_十五、填空题15P(2m-4,1-2m)在y轴上,则m=_十六、填空题16如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)根据这个规律探索可得,第2021个点的坐

4、标为_十七、解答题17计算:(1)(2)十八、解答题18已知m+n=2,mn=-15,求下列各式的值(1);(2)十九、解答题19如图,求度数完成说理过程并注明理由解:,_( )又,_( )( ),_度二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到原点的距离是_;(2)将点向轴的负方向平移个单位,则它与点_重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离是多少?二十一、解答题21已知的平方根是,的立方根是4,的算术平方根是m(1)求m的值;(2)如果,其中x是整数,且,求的值二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)

5、李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由二十四、解答题24如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且(1)求

6、的度数(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律(3)当点P运动到使时,求的度数二十五、解答题25直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA

7、至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.【参考答案】一、选择题1B解析:B【分析】根据平方根的定义:如果(),那么a就叫做b的平方根,解答即可【详解】解:“9的平方根”这句话用数学符号表示为:,故选B【点睛】本题考查了平方根的定义,是基础概念题,熟记概念是解题的关键2A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项解析:A【分析】根据旋转变换,平移变换,

8、轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项不符合题意;C、可以由一个“基本图案”旋转得到,故本选项不符合题意;D、可以由一个“基本图案”旋转得到,故本选项不符合题意故选:A【点睛】本题主要考查了图形的平移和旋转,准确分析判断是解题的关键3B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,故选:B【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键4C【

9、分析】根据命题的定义分别对各语句进行判断【详解】解:“同角的补角相等”是命题,“雪是白的”是命题;“画AOB=Rt”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题故选:C【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式 有些命题的正确性是用推理证实的,这样的真命题叫做定理5A【分析】过G作GMAB,根据平行线的性质可得2=5,6=4,进而可得FGC=2+4,再利用平行线的性质进行等量代换可得31=210,求出1的度数,然后可得答案【详解】解:过G作GM

10、AB,2=5,ABCD,MGCD,6=4,FGC=5+6=2+4,FG、CG分别为EFG,ECD的角平分线,1=2=EFG,3=4=ECD,E+2G=210,E+1+2+ECD=210,ABCD,ENB=ECD,E+1+2+ENB=210,1=E+ENB,1+1+2=210,31=210,1=70,EFG=270=140故选:A【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等6B【分析】利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值【详解】根据题意,x=27,取立方根得3,3为有

11、理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为.故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1

12、,纵坐标相同,然后写出即可【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可【详解】解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A2021的坐标是(1011,1011)故选:A【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结

13、合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题10【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:

14、【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点关键是掌握点的坐标的变化规律十一、填空题1135【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示出ECD,然后整理即可得到A与E的关系,进而可求出E【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示出EC

15、D,然后整理即可得到A与E的关系,进而可求出E【详解】解:BE和CE分别是ABC和ACD的角平分线,EBC=ABC,ECD=ACD,又ACD是ABC的一外角,ACD=A+ABC,ECD=(A+ABC)=A+ECD,ECD是BEC的一外角,ECD=EBC+E,E=ECD-EBC=A+EBC-EBC=A=70=35,故答案为:35【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键十二、填空题12(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关

16、系,利用等量代换、等式的性质即可得出答案【详解】解:如图解析:(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图所示,过点E作,过点F作,且,故答案为:【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键十三、填空题1335或75或125【分析】由于EF不与BC平行,则分EFAB和EFAC,画出图形,结合折叠和平行线的性质求出BDE的度数【详解】解:当EFAB时,BDE=DEF,由折解析:35或75或125【分析】由于

17、EF不与BC平行,则分EFAB和EFAC,画出图形,结合折叠和平行线的性质求出BDE的度数【详解】解:当EFAB时,BDE=DEF,由折叠可知:DEF=DEB,BDE=DEB,又B=30,BDE=(180-30)=75;当EFAC时,如图,C=BEF=50,由折叠可知:BED=FED=25,BDE=180-B=BED=125;如图,EFAC,则C=CEF=50,由折叠可知:BED=FED,又BED+CED=180,则CED+50=180-CED,解得:CED=65,BDE=CED-B=65-30=35;综上:BDE的度数为35或75或125【点睛】本题考查了平行线的性质,三角形内角和,折叠问题

18、,解题的关键是注意分类讨论,画图图形推理求解十四、填空题14【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故答案为:【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答十五、填空题152【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值【详解】点P(2m-4,

19、1-2m)在y轴上,2m-4=0,解得m=2故答案为:2【点睛】此题考查点的坐标,熟记y解析:2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值【详解】点P(2m-4,1-2m)在y轴上,2m-4=0,解得m=2故答案为:2【点睛】此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键十六、填空题16(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线

20、上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,右下角的点的横坐标为2时,如下图点,共有4个,右下角的点的横坐标为3时,共有9个,右下角的点的横坐标为4时,如下图点,共有16个,右下角的点的横坐标为时,共有个,45是奇数,第2025个点是,点是向上平移4个单位,第2021个点是故答案为:【点睛】本题考查了点的坐标的规律变

21、化,观察出点的个数按照平方数的规律变化是解题的关键十七、解答题17(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公

22、式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键十九、解答题193;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得2=3,通过等量代换得出1=3,再根据内错角相等解析:3;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得2=3,通过等量代换得出1=3,再根据内错角相等,两直线平行,得出ABDG,然后根

23、据两直线平行,同旁内角互补解答即可【详解】解:EFAD,2=3(两直线平行,同位角相等)又1=2,1=3,ABDG(内错角相等,两直线平行)AGD+BAC=180(两直线平行,同旁内角互补)AGD=110,BAC=70度故答案为:3;两直线平行,同位角相等;DG;内错角相等,两直线平行;BAC;两直线平行,同旁内角互补;70【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出ABDG是解题的关键二十、解答题20(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所

24、求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)E(5,7),点E到x轴的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距

25、离公式本题是综合题型,但难度不大二十一、解答题21(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y解析:(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,b-a=5,其算术平方根为,m=(2)x+y=10+23,1210+13,x=

26、12,y=10+-12=-2x-y=12-(-2)=【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别

27、为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=G解析:(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=

28、65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当

29、点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等二十四、解答题24(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案

30、;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案【详解】(1)BC,BD分别评分和,又,;(2),又BD平分,;与之间的数量关系保持不变;(3),又,由(1)可得,【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解二十五、解答题25(1)AEB的大小不会发生

31、变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到解析:(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到PAB+ABM270,根据角平分线的定义得到BACPAB,ABCABM,于是得到结论;(2)由于将ABC沿直线AB折叠,若点C落在直线PQ上,得到CABBAQ,由角平分线的定义得到PACCAB,即可得到结论;根据将ABC沿直线AB折叠,若点C落在直线MN上,得到ABCABN,由于

32、BC平分ABM,得到ABCMBC,于是得到结论;(3)由BAO与BOQ的角平分线相交于E可得出E与ABO的关系,由AE、AF分别是BAO和OAG的角平分线可知EAF90,在AEF中,由一个角是另一个角的倍分情况进行分类讨论即可【详解】解:(1)ACB的大小不变,直线MN与直线PQ垂直相交于O,AOB90,OAB+OBA90,PAB+ABM270,AC、BC分别是BAP和ABM角的平分线,BACPAB,ABCABM, BAC+ABC(PAB+ABM)135,ACB45;(2)将ABC沿直线AB折叠,若点C落在直线PQ上,CABBAQ,AC平分PAB,PACCAB,PACCABBAO60,AOB9

33、0,ABO30,将ABC沿直线AB折叠,若点C落在直线MN上,ABCABN,BC平分ABM,ABCMBC,MBCABCABN,ABO60,故答案为:30,60;(3)AE、AF分别是BAO与GAO的平分线,EAOBAO,FAOGAO,EEOQEAO(BOQBAO)ABO,AE、AF分别是BAO和OAG的角平分线,EAFEAO+FAO(BAO+GAO)90在AEF中,BAO与BOQ的角平分线相交于E,EAO= BAO,EOQ=BOQ, E=EOQ-EAO=(BOQ-BAO)=ABO,有一个角是另一个角的倍,故有:EAFF,E30,ABO60;FE,E36,ABO72;EAFE,E60,ABO120(舍去);EF,E54,ABO108(舍去);ABO为60或72【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服