资源描述
人教版中学七7年级下册数学期末综合复习题(含答案)
一、选择题
1.如图,直线截、分别交于、两点,则的同位角是( )
A. B. C. D.
2.如图所示的车标,可以看作由平移得到的是( )
A. B. C. D.
3.如果在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中假命题有( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行
③点到直线的垂线段叫做点到直线的距离
④过一点有且只有一条直线与已知直线平行
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个 B.4个 C.3个 D.2个
5.如图所示,,三角板如图放置,其中,若,则的度数是( )
A. B. C. D.
6.若,则的值是( )
A.1 B.-3 C.1或-3 D.-1或3
7.已知直线,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=25°,则∠2的度数为( )
A.55° B.45° C.30° D.25°
8.如图所示,平面直角坐标系中,轴负半轴有一点,点先向上平移1个单位至,接着又向右平移1个单位至点,然后再向上平移1个单位至点,向右平移1个单位至点,照此规律平移下去,点平移至点时,点的坐标为( )
A. B. C. D.
九、填空题
9.已知=8,则x的值是________________.
十、填空题
10.点P(﹣2,3)关于x轴的对称点的坐标是_____.
十一、填空题
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
十二、填空题
12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.
十三、填空题
13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º.
十四、填空题
14.已知的小数部分是,的小数部分是,则________.
十五、填空题
15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______.
十六、填空题
16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________.
十七、解答题
17.计算下列各式的值:
(1)|–2|– + (–1)2021;
(2).
十八、解答题
18.已知a+b=5,ab=2,求下列各式的值.
(1)a2+b2;
(2)(a﹣b)2.
十九、解答题
19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F.
(1)请把下面证明过程中序号对应的空白内容补充完整.
证明:∴∠1=∠2(已知)
又∵∠1=∠DMN( )
∵∠2=∠DMN(等量代换)
∴DB∥EC( )
∴∠DBC+∠C=180°( ).
∵∠C=∠D(已知),
∴∠DBC+( )=180°(等量代换)
∴DF∥AC( )
∴∠A=∠F( )
(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.
二十、解答题
20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).
(1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标;
(2)写出平移的过程;
(3)求出以A,C,A1,C1为顶点的四边形的面积.
二十一、解答题
21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是_______,小数部分是_________;
(2)如果的小数部分为的整数部分为求的值.
二十二、解答题
22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
二十三、解答题
23.如图1,点在直线、之间,且.
(1)求证:;
(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;
(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).
二十四、解答题
24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)①∠ABN的度数是 ;②∵AM∥BN,∴∠ACB=∠ ;
(2)求∠CBD的度数;
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;
(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
二十五、解答题
25.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.
【详解】
解:如图所示,
∠1的同位角为∠3,
故选B.
【点睛】
本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.
2.B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平
解析:B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平移得到的,故符合题意;
C、不能经过平移得到的,故不符合题意;
D、不能经过平移得到的,故不符合题意;
故选B.
【点睛】
本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.
3.B
【分析】
根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴a+b<0,ab>0,
∴点Q(a+b,ab)在第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据平行线的性质和判定,点到直线距离定义一一判断即可.
【详解】
解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;
③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;
④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.
故选B.
【点睛】
本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.
5.B
【分析】
作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.
【详解】
解:作BD∥l1,如图所示:
∵BD∥l1,∠1=40°,
∴∠1=∠ABD=40°,
又∵l1∥l2,
∴BD∥l2,
∴∠CBD=∠2,
又∵∠CBA=∠CBD+∠ABD=90°,
∴∠CBD=50°,
∴∠2=50°.
故选:B.
【点睛】
本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.
6.C
【分析】
根据题意,利用平方根,立方根的定义求出a,b的值,再代入求解即可.
【详解】
解:
,
当时,;
∴当时,.
故选:C.
【点睛】
本题考查的知识点是平方根以及立方根的定义,根据定义求出a,b的值是解此题的关键.
7.A
【分析】
易求的度数,再利用平行线的性质即可求解.
【详解】
解:,,
,
直线,
,
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质是解题的关键.
8.C
【分析】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.
【详解】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2
解析:C
【分析】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.
【详解】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),……,A2n-1(-2+n,n),
∵ ,
∴A2021(1009,1011),
故选:C.
【点睛】
本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.
九、填空题
9.65
【解析】
【分析】
根据算术平方根的定义确定x-1的值,解方程即可.
【详解】
∵=8
∴x-1=64
x=65
故答案为65
【点睛】
本题考查了算术平方根的定义,掌握算术平方根的定义是关键
解析:65
【解析】
【分析】
根据算术平方根的定义确定x-1的值,解方程即可.
【详解】
∵=8
∴x-1=64
x=65
故答案为65
【点睛】
本题考查了算术平方根的定义,掌握算术平方根的定义是关键.
十、填空题
10.(﹣2,﹣3)
【分析】
两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.
【详解】
点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,
∴对称点的坐标是(﹣2,﹣3).
故答案为
解析:(﹣2,﹣3)
【分析】
两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.
【详解】
点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,
∴对称点的坐标是(﹣2,﹣3).
故答案为(﹣2,﹣3).
【点睛】
本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.
十一、填空题
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
十二、填空题
12.36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=
解析:36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=∠EFB=72°,
又由折叠的性质可得∠D′EF=∠DEF=72°,
∴∠AED′=180°﹣72°﹣72°=36°,
故答案为:36°.
【点睛】
本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.
十三、填空题
13.23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED
解析:23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED,
又∵∠EFB=44°,∠B=90°,
∴∠BEF=46°,
∴∠DEC=(180°-46°)=67°,
∴∠EDC=90°-∠DEC=23°,
故答案为:23.
【点睛】
本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.
十四、填空题
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴2<<3,∴-3<-<-2,
∴7<5+<8,2<5-<3,
∴5+的整数部分是7,5-的整数部分为2,
∴a=5+-7=-2,b=5--2=3-,
∴12019=1.
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
十五、填空题
15.-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>
解析:-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>-1,
∴-1<a<3.
故答案为:-1<a<3.
【点睛】
本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动
解析:
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,
第2次接着运动到点,第3次接着运动到点,
第4次运动到点,第5次接着运动到点,,
横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,
纵坐标为2,0,1,0,每4次一轮,
经过第2021次运动后,,
故动点的纵坐标为2,
经过第2021次运动后,动点的坐标是.
故答案为:.
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=
解析:(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=3+1-6,
=–2.
【点睛】
本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.
十八、解答题
18.(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解析:(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解:(1)∵a+b=5,ab=2,
∴a2+b2=(a+b)2﹣2ab=52﹣2×2=21;
(2))∵a+b=5,ab=2,
∴(a﹣b)2=a2+b2-2ab=21-2×2=17.
【点睛】
本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键.
十九、解答题
19.(1)见解析;(2)见解析
【分析】
(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即
解析:(1)见解析;(2)见解析
【分析】
(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;
(2)由平行线的性质及等量代换即可得解.
【详解】
解:(1)证明:∵∠1=∠2(已知),
又∵∠1=∠DMN(对顶角相等),
∴∠2=∠DMN(等量代换),
∴DB∥EC(同位角相等,两直线平行 ),
∴∠DBC+∠C=180°( 两直线平行,同旁内角互补),
∵∠C=∠D(已知),
∵∠DBC+(∠D)=180°(等量代换),
∴DF∥AC( 同旁内角互补,两直线平行),
∴∠A=∠F(两直线平行,内错角相等 ).
(2)∵DB∥EC,
∴∠DBC+∠C=180°,∠DEC+∠D=180°,
∵∠C=∠D,
∴∠DBC=∠DEC.
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.
二十、解答题
20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别
解析:(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;
(2)由(1)可直接进行求解;
(3)由(1)的图象可直接利用割补法进行求解面积.
【详解】
解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:
∴由图象可得;
(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;
(3)连接,如图所示:
∵点,
∴点在同一条直线上,且与x轴平行,
∴.
【点睛】
本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键.
二十一、解答题
21.(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故
解析:(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故答案为:5;-5;
(2)∵3<<4,
∴a=-3,
∵3<<4,
∴b=3,
∴=-3+3-=0.
【点睛】
本题考查了估算无理数的大小,能估算出、、的范围是解此题的关键.
二十二、解答题
22.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
二十三、解答题
23.(1)见解析;(2)10°;(3)
【分析】
(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;
(2)过点E作HE∥CD,设 由(1)得AB∥CD
解析:(1)见解析;(2)10°;(3)
【分析】
(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;
(2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;
(3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出.
【详解】
(1)过点E作EF∥CD,如图,
∵EF∥CD,
∴
∴
∵,
∴
∴EF∥AB,
∴CD∥AB;
(2)过点E作HE∥CD,如图,
设
由(1)得AB∥CD,则AB∥CD∥HE,
∴
∴
又∵平分,
∴
∴
即
解得:即;
(3)过点N作NP∥CD,过点M作QM∥CD,如图,
由(1)得AB∥CD,则NP∥CD∥AB∥QM,
∵NP∥CD,CD∥QM,
∴,
又∵,
∴
∵,
∴
∴
又∵PN∥AB,
∴
∵,
∴
又∵AB∥QM,
∴
∴
∴.
【点睛】
本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.
二十四、解答题
24.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;
(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;
(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.
【详解】
解:(1)①∵AM//BN,∠A=64°,
∴∠ABN=180°﹣∠A=116°,
故答案为:116°;
②∵AM//BN,
∴∠ACB=∠CBN,
故答案为:CBN;
(2)∵AM//BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°﹣64°=116°,
∴∠ABP+∠PBN=116°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=116°,
∴∠CBD=∠CBP+∠DBP=58°;
(3)不变,
∠APB:∠ADB=2:1,
∵AM//BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(4)∵AM//BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,
则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN
∴∠ABC=∠DBN,
由(1)∠ABN=116°,
∴∠CBD=58°,
∴∠ABC+∠DBN=58°,
∴∠ABC=29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
二十五、解答题
25.(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得
解析:(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得出结论.
【详解】
解:(1),
,
,
,
,
;
(2)由(1)知,,
,
,
,
;
(3)当时,如图3,
由(1)知,,
;
当时,如图4,
,
点,重合,
,
,
由(1)知,,
,
即当以、、为顶点的三角形是直角三角形时,度数为或.
【点睛】
此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.
展开阅读全文