资源描述
人教版七年级下册数学期末综合复习试卷(附答案)
一、选择题
1.的算术平方根是()
A. B. C. D.
2.在下列现象中,属于平移的是( ).
A.荡秋千运动
B.月亮绕地球运动
C.操场上红旗的飘动
D.教室可移动黑板的左右移动
3.在平面直角坐标系中,点(﹣3,2)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )
A.①②都对 B.①对②错 C.①②都错 D.①错②对
5.直线,直线与,分别交于点,,.若,则的度数为( )
A. B. C. D.
6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( )
A.①② B.①②③ C.②③ D.③
7.如图,将一张长方形纸片折叠,若,则的度数是( )
A.80° B.70° C.60° D.50°
8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动.其行走路线如图所示,第1次移动到,第2次移动到,…,第n次移动到,则的面积是( )
A. B. C. D.
九、填空题
9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.
十、填空题
10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.
十一、填空题
11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点. 如果∠A=α,那么∠BOC的度数为____________.
十二、填空题
12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___.
十三、填空题
13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____.
十四、填空题
14.如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是__________.
十五、填空题
15.已知点、,点P在轴上,且的面积为5,则点P的坐标为__________.
十六、填空题
16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________.
十七、解答题
17.计算:
(1);
(2).
十八、解答题
18.求下列各式中x的值.
(1)4x2﹣25=0;
(2)(2x﹣1)3=﹣64.
十九、解答题
19.阅读下列推理过程,在括号中填写理由.
已知:如图,点、分别是线段、上的点,平分,,,交于点.
求证:平分.
证明:平分(已知)
( )
(已知)
( )
( )
(等量代换)
( )
( )
( )
( )
平分( )
二十、解答题
20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.
(1)分别写出点A、B、C的坐标;
(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A1B1C1,其中点A的对应点是A1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;
(3)求ABC的面积.
二十一、解答题
21.阅读下面的文字,解答问题.
大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题:
(1)的整数部分是___________,小数部分是___________;
(2)若设整数部分是,小数部分是,求的值.
二十二、解答题
22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二十三、解答题
23.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系: .
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据算术平方根的意义求解即可.
【详解】
解:16的算术平方根为4,
故选:A.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.
2.D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室
解析:D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室可移动黑板的左右移动是平移,故本选项正确.
故选:D.
【点睛】
本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.
3.B
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点在第二象限,
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
4.C
【分析】
根据平行公理及其推论判断即可.
【详解】
解:①过直线外一点有且只有一条直线和已知直线平行,故错误;
②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;
故选:C.
【点睛】
本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.
5.B
【分析】
由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数.
【详解】
解:由题意,根据对顶角相等,则
,
∵,
∴,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出.
6.D
【分析】
分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.
【详解】
解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;
②∵42=16,∴4是16的算术平方根,故②错误,
③平方根等于它本身的数只有0,故③正确,
④8的立方根是2,故④错误.
故选:D.
【点睛】
本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.
7.A
【分析】
先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案.
【详解】
解:如图,
由折叠性质知∠4=∠2=50°,
∴∠3=180°-∠4-∠2=80°,
∵AB∥CD,
∴∠1=∠3=80°,
故选:A.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.
8.C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详
解析:C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
每四次一循环,每个循环,点向x轴的正方向前进2cm,
∴OA4n=2n,
∵2021=505×4+1,
∴点A2021在x轴上,且OA2021=505×2+1=1011,
∴△OA2A2021的面积=×1×1011=(cm2).
故选:C.
【点睛】
本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.
九、填空题
9.【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛
解析:
【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛】
本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.
十、填空题
10.【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴
解析:
【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴的对称点为,则点P的纵坐标为1
点关于轴的对称点为,则点P的横坐标为2
则点P的坐标为
故答案为:.
【点睛】
本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.
十一、填空题
11.90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
解析:90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
∵在△OBC中,∠BOC=180°-∠OBC-∠OCB,
∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+.
十二、填空题
12.115°
【分析】
要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.
【详解】
解:∵AB∥CD
解析:115°
【分析】
要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.
【详解】
解:∵AB∥CD,∠C=50°,
∴∠C=∠AOC=50°,
∵OE平分∠AOC,
∴25°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOF=∠AOE+∠EOF=115°,
故答案为:115°.
【点睛】
本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.
十三、填空题
13.30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º
解析:30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º,
∴∠DNM=∠BMN=75º,
∵将矩形ABCD沿MN折叠,使点B与点D重合,
∴∠BMN=∠NMD=75º,
∴∠BMD=150º,
∴∠AMD=30º,
故答案为:30º.
【点睛】
本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.
十四、填空题
14.、、、.
【详解】
解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;
如果两次才输出结果:则x=(53-2)÷3=17;
如果三次才输出结果:则x=(17-2)÷3=5;
解析:、、、.
【详解】
解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;
如果两次才输出结果:则x=(53-2)÷3=17;
如果三次才输出结果:则x=(17-2)÷3=5;
如果四次才输出结果:则x=(5-2)÷3=1;
则满足条件的整数值是:53、17、5、1.
故答案为53、17、5、1.
点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.
十五、填空题
15.(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4
解析:(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4,0)或(6,0),
故答案为:(-4,0)或(6,0)
【点睛】
此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.
十六、填空题
16.(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且
解析:(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.
【详解】
解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,
∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵2021÷4=505…1,
∴点P2021在第二象限,
∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),
∴点P2021(﹣506,505),
故答案为:(﹣506,505).
【点睛】
本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.
十七、解答题
17.(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点
解析:(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点睛】
本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.
十八、解答题
18.(1)x=;(2)x=.
【分析】
(1)利用平方根的定义求解;
(2)利用立方根的定义求解.
【详解】
解:(1)4x2﹣25=0,
4x2=25,
x2=,
x=;
(2)(2x﹣1)3=﹣64
解析:(1)x=;(2)x=.
【分析】
(1)利用平方根的定义求解;
(2)利用立方根的定义求解.
【详解】
解:(1)4x2﹣25=0,
4x2=25,
x2=,
x=;
(2)(2x﹣1)3=﹣64,
2x﹣1=﹣4,
2x=﹣3,
x=.
【点睛】
本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.
十九、解答题
19.见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(
解析:见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(已知)
(两直线平行,同位角相等)
(两直线平行,内错角相等)
(等量代换)
平分(角平分线的定义)
【点睛】
本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标
解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.
【详解】
解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);
(2)如图,△A1B1C1为所作,
∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,
∴A1(-3+6,4-4)即(3,0)
同理得到B1(1,﹣2),C1(4,﹣4);
(3)△ABC的面积=3×4﹣×2×3﹣×4×1﹣×2×2=5.
【点睛】
本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了
解析:(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了估算无理数的大小,熟悉相关性质是解题得关键.
二十二、解答题
22.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二十三、解答题
23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根
解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,
∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=∠DEB=∠DEA,
∴∠PEA=∠AED,
∴∠DEP=∠PEA+∠AED=∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠DCE=BCD,
∵∠BCD=70°,
∴∠DCE=35°,
∵l2∥l3,
∴∠CED=∠DCE=35°,
∵l2⊥l1,
∴∠CAD=90°,
∴∠ADC=90°﹣70°=20°;
故答案为:35,20;
(3)∵CF平分∠BCD,
∴∠BCF=∠DCF,
∵l2⊥l1,
∴∠CAD=90°,
∴∠BCF+∠AGC=90°,
∵CD⊥BD,
∴∠DCF+∠CFD=90°,
∴∠AGC=∠CFD,
∵∠AGC=∠DGF,
∴∠DGF=∠DFG;
(4)∠N:∠BCD的值不会变化,等于;理由如下:
∵l2∥l3,
∴∠BED=∠EBH,
∵∠DBE=∠DEB,
∴∠DBE=∠EBH,
∴∠DBH=2∠DBE,
∵∠BCD+∠BDC=∠DBH,
∴∠BCD+∠BDC=2∠DBE,
∵∠N+∠BDN=∠DBE,
∴∠BCD+∠BDC=2∠N+2∠BDN,
∵DN平分∠BDC,
∴∠BDC=2∠BDN,
∴∠BCD=2∠N,
∴∠N:∠BCD=.
【点睛】
本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.
展开阅读全文