资源描述
人教版七年级下册数学期末综合复习试卷(及答案)
一、选择题
1.一个有理数的平方等于,则这个数是()
A. B.或
C. D.
2.下列图形中,哪个可以通过图1平移得到( )
A. B. C. D.
3.在平面直角坐标系中,下列各点位于第三象限的是( )
A. B. C. D.
4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A.②③ B.②④ C.③④ D.②③④
5.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b中的直线b上,已知,则的度数为
A. B. C. D.
6.下列计算正确的是( )
A. B. C. D.
7.如图,,交于点,平分,,则的度数为( ).
A.60° B.55° C.50° D.45°
8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动.其行走路线如图所示,第1次移动到,第2次移动到,…,第n次移动到,则的面积是( )
A. B. C. D.
九、填空题
9.若,则的值为
十、填空题
10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.
十一、填空题
11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________.
十二、填空题
12.如图,已知直线EF⊥MN垂足为F,且∠1=138°,则当∠2等于__时,AB∥CD.
十三、填空题
13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________.
十四、填空题
14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.
十五、填空题
15.在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是________.
十六、填空题
16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是______.
十七、解答题
17.计算题
(1). (2);
十八、解答题
18.求下列各式中的x值:
(1)(x﹣1)2=4;
(2)(2x+1)3+64=0;
(3)x3﹣3=.
十九、解答题
19.完成下面推理过程,并在括号中填写推理依据:
如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3,试说明:AD平分∠BAC.
证明:∵AD⊥BC,EG⊥BC
∴∠ADC= =90°(垂直定义)
∴ ∥EG(同位角相等,两直线平行)
∴∠1= ( )
∠2=∠3( )
又∵∠3=∠E(已知)
∴ =∠2
∴AD平分∠BAC
二十、解答题
20.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,每个小正方形边长为1个单位长度.
(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,画出图形,并写出各顶点坐标;
(2)求△ABC的面积.
二十一、解答题
21.请回答下列问题:
(1)介于连续的两个整数和之间,且,那么 , ;
(2)是的小数部分,是的整数部分,求 , ;
(3)求的平方根.
二十二、解答题
22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 .
(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;
(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).
二十三、解答题
23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.
二十四、解答题
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
二十五、解答题
25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据一个数a,如果,那么a就叫做b的平方根求解即可.
【详解】
解:∵,
∴36的平方根为6或-6,
故选B.
【点睛】
本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.
2.A
【详解】
试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.
考点:平移的性质.
解析:A
【详解】
试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.
考点:平移的性质.
3.D
【分析】
根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.
【详解】
解:A、(0,3)在y轴上,故本选项不符合题意;
B、(−2,1)在第二象限,故本选项不符合题意;
C、(1,−2)在第四象限,故本选项不符合题意;
D、(-1,-1)在第三象限,故本选项符合题意.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.
【详解】
对顶角相等,所以①正确,不符合题意;
过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;
相等的角不一定为对顶角,所以③不正确,符合题意;
两直线平行,同位角相等,所以④不正确,符合题意,
故选:D.
【点睛】
本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.
5.B
【分析】
先根据平行线的性质求出∠1的同位角,再由两角互余的性质求出∠2的度数即可;
【详解】
∵直线a∥b,∠1=55°,
∴∠1=∠3=55°,
∵三角板的直角顶点放在b上,
∴∠3+∠2=90°,
∴∠2=90°-55°=35°,
故选:B.
【点睛】
本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键;
6.D
【分析】
根据算术平方根、立方根、二次根式的乘法逐项判断即可得.
【详解】
A、,此项错误;
B、,此项错误;
C、,此项错误;
D、,此项正确;
故选:D.
【点睛】
本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.
7.C
【分析】
根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得.
【详解】
,
,
又∵
,
平分,
,
故选:C.
【点睛】
本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点.
8.C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详
解析:C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
每四次一循环,每个循环,点向x轴的正方向前进2cm,
∴OA4n=2n,
∵2021=505×4+1,
∴点A2021在x轴上,且OA2021=505×2+1=1011,
∴△OA2A2021的面积=×1×1011=(cm2).
故选:C.
【点睛】
本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.
九、填空题
9.-1
【解析】
解:有题意得,,,,则
解析:-1
【解析】
解:有题意得,,,,则
十、填空题
10.【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴
解析:
【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴的对称点为,则点P的纵坐标为1
点关于轴的对称点为,则点P的横坐标为2
则点P的坐标为
故答案为:.
【点睛】
本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.
十一、填空题
11.50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的
解析:50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=∠AOC,∠FOC=∠BOC,
∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°;
若射线OC在∠AOB的外部,
①射线OE,OF只有1个在∠AOB外面,如图,
∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°;
②射线OE,OF都在∠AOB外面,如图,
∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°;
综上:∠EOF的度数为50°或130°,
故答案为:50°或130°.
【点睛】
本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.
十二、填空题
12.48°
【分析】
先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.
【详解】
解:若AB//CD,
则∠3=∠4,
又∵∠1+∠3=180°,∠1=138°,
解析:48°
【分析】
先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.
【详解】
解:若AB//CD,
则∠3=∠4,
又∵∠1+∠3=180°,∠1=138°,
∴∠3=∠4=42°;
∵EF⊥MN,
∴∠2+∠4=90°,
∴∠2=48°;
故答案为:48°.
【点睛】
本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.
十三、填空题
13.68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵延折叠得到,
解析:68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵延折叠得到,
∴,
∵,,
∴(两直线平行,内错角相等),
∴,
∴,
又∵,
∴,
∴.
综上,.
故答案为:68°;112°.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.
十四、填空题
14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的规律为:分子为,分母为
归纳类推得:第n个等式为(n为正整数)
当时,这个等式为,即
故答案为:.
【点睛】
本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.
十五、填空题
15.(-3,2)
【分析】
根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.
【详解】
∵点到横轴的距离为,到纵轴的距离为,
解析:(-3,2)
【分析】
根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.
【详解】
∵点到横轴的距离为,到纵轴的距离为,
∴|y|=2,|x|=3,
由M是第二象限的点,得:
x=−3,y=2.
即点M的坐标是(−3,2),
故答案为:(−3,2).
【点睛】
此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.
十六、填空题
16.【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为
解析:
【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为,
所以点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.
十七、解答题
17.(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
解析:(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.
十八、解答题
18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(
解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(1)开方得:x﹣1=2或x﹣1=﹣2,
解得:x=3或x=﹣1;
(2)方程整理得:(2x+1)3=﹣64,
开立方得:2x+1=﹣4,
解得:x=﹣2.5;
(3)方程整理得:x3=,
开立方得:x=1.5.
【点睛】
本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.
十九、解答题
19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义
【分析】
根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠
解析:;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义
【分析】
根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠3=∠E,等量代换即可的,即可证明AD平分∠BAC.
【详解】
证明:∵AD⊥BC,EG⊥BC
∴∠ADC==90°(垂直定义)
∴∥EG(同位角相等,两直线平行)
∴∠1=(两直线平等行,同位角相等)
∠2=∠3(两直线平行,内错角相等)
又∵∠3=∠E(已知)
∴=∠2(等量代换)
∴AD平分∠BAC(角平分线的定义)
故答案是:∠EGC;AD;∠E;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.
【点睛】
本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.
二十、解答题
20.(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位
解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位置写出各点坐标即可;
(2)根据图形的面积的和差求出△ABC的面积即可.
【详解】
解:如图所示,
、、;
.
【点睛】
本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
二十一、解答题
21.(1)4;b=(2)−4;3(3)±8
【分析】
((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值;
(2)根据(1)的结论即可确定x与y的值;
(3)把(2)的结论代入计算即
解析:(1)4;b=(2)−4;3(3)±8
【分析】
((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值;
(2)根据(1)的结论即可确定x与y的值;
(3)把(2)的结论代入计算即可.
【详解】
解:(1)∵16<17<25,
∴4<<5,
∴a=4,b=5,
故答案为:4;5;
(2)∵4<<5,
∴6<+2<7,
由此整数部分为6,小数部分为−4,
∴x=−4,
∵4<<5,
∴3<-1<4,
∴y=3;
故答案为:−4;3
(3)当x=−4,y=3时,
==64,
∴64的平方根为±8.
【点睛】
此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.
二十二、解答题
22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周
解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;
(3)根据图形的平移求解.
【详解】
解:(1)∵正方体有6个面且每个面都相等,
∴正方体的一个面的面积=2 dm2.
∴正方形的棱长=dm;
故答案为: dm ;
(2)甲方案:设正方形的边长为xm,则x2 =121
∴x =11
∴正方形的周长为:4x=44m
乙方案: 设圆的半径rm为,则r2==121
∴r =11
∴圆的周长为:2= 22m
∴ 442222(2-
∵ 4>
∴ 2
∴
∴正方形的周长比圆的周长大
故从节省篱笆费用的角度考虑,选择乙方案建成圆形;
(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则
(11 –y)2=12121
∴11 –y =10
∴ y=
∵ 取整数
∴ y =
答:根据此方案求出小路的宽度为;
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;
二十三、解答题
23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后
解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;
(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BMHD,则HDGEBM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BPHDGE,过F作FQHDGE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,
∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PKHDGE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,
∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=∠HAP+∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,
∴∠PCN=90°﹣∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,
即:∠N=90°﹣∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十四、解答题
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
二十五、解答题
25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°
解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;
(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,
得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;
(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.
【详解】
解:(1)证明:∵BE平分∠ABD,
∴∠EBD=∠ABD,
∵DE平分∠BDC,
∴∠EDB=∠BDC,
∴∠EBD+∠EDB=(∠ABD+∠BDC),
∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠EBD+∠EDB=90°,
∴∠BED=180°﹣(∠EBD+∠EDB)=90°.
(2)解:如图2,
由(1)知:∠EBD+∠EDB=90°,
又∵∠ABD+∠BDC=180°,
∴∠ABE+∠EDC=90°,
即∠ABE+α+∠FDC=90°,
∵BG平分∠ABE,DG平分∠CDF,
∴∠ABE=2∠ABG,∠CDF=2∠CDG,
∴2∠ABG+2∠CDG=90°﹣α,
过点G作GP∥AB,
∵AB∥CD,
∴GP∥AB∥CD
∴∠ABG=∠BGP,∠PGD=∠CDG,
∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;
(3)如图,过点F、G分别作FN∥AB、GM∥AB,
∵AB∥CD,
∴AB∥GM∥FN∥CD,
∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,
∴∠BFD=∠BFN+∠DFN=∠3+∠5,
∠BGD=∠BGM+∠DGM=∠4+∠6,
∵BG平分∠FBP,DG平分∠FDQ,
∴∠4=∠FBP=(180°﹣∠3),
∠6=∠FDQ=(180°﹣∠5),
∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,
=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),
=180°+(∠3+∠5),
=180°+∠BFD,
整理得:2∠BGD+∠BFD=360°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.
展开阅读全文