1、2022年人教版七7年级下册数学期末考试试卷及解析一、选择题1下列所示的四个图形中,和不是同位角的是( )ABCD2下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( )ABCD3在平面直角坐标系中,点(1,+1)一定在()A第一象限B第二象限C第三象限D第四象限4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,ABCD,12,3130,则2等于()A30B25C35D406下列说法不正确的是()A的平方根是B9是81的平方根C0.4的算术平方根是0.2D37将45的直角三角形纸片和矩形纸片按如图方式
2、折叠放在一起,若1=31,则2的度数为( )A10B14C20D318如图,一个机器人从点出发,向正西方向走到达点;再向正北方向走到达点,再向正东方向走到达点,再向正南方向走到达点,再向正西方向走到达点,按如此规律走下去,当机器人走到点时,点的坐标为( )ABCD九、填空题9若=0,则=_ .十、填空题10已知点P(3,1),则点P关于x轴对称的点Q_十一、填空题11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.十二、填空题12如图,则的度数为_十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则
3、EFC的度数为_十四、填空题14材料:一般地,n个相同因数a相乘:记为如,此时3叫做以2为底的8的对数,记为(即)那么_,_十五、填空题15已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是_十六、填空题16如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为_十七、解答题17计算:(1) (2)(3) (4)十八、解答题18求满足下
4、列各式的未知数(1)(2)十九、解答题19如图,1=2,3=C,4=5请说明BF/DE的理由(请在括号中填上推理依据)解:12(已知)CF/BD( )3+CAB180( )3C(已知)C+CAB180(等式的性质)AB/CD( )4EGA(两直线平行,同位角相等)45(已知)5EGA(等量代换)ED/FB( )二十、解答题20如图,在平面直角坐标系中,中任意一点经平移后对应点为,将作同样的平移得到(1)请画出并写出点,的坐标;(2)求的面积;(3)若点在轴上,且的面积是1,请直接写出点的坐标二十一、解答题21已知的平方根是的立方根是是的整数部分,求的算术平方根二十二、解答题22求下图的方格中阴
5、影部分正方形面积与边长二十三、解答题23已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值二十四、解答题24已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线G
6、F上一动点,探究,与的数量关系,请直接写出结论二十五、解答题25在中,点在直线上运动(不与点、重合),点在射线上运动,且,设(1)如图,当点在边上,且时,则_,_;(2)如图,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图中画出图形,并给予证明(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1C解析:C【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可【详解】解:选项A、B、D中,1与2在截线
7、的同侧,并且在被截线的同一方,是同位角;选项C中,1与2的两条边都不在同一条直线上,不是同位角故选:C【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角2B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查解析:B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题
8、考查平移的概念,考查观察能力3B【分析】根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答【详解】解:0,+10,点(-1,+1)一定在第二象限,故选B【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是
9、命题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5B【分析】根据ABCD,3130,求得GAB3130,利用平行线的性质求得BAE180GAB18013050,由12 求出答案即可【详解】解:ABCD,3130,GAB3130,BAE+GAB180,BAE180GAB18013050,12, 2BAE5025故选:B【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键6C【分析】根据立方根与平方根的定义即可求出答案【详解】解:0.4的算术平方根为
10、,故C错误,故选C【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型7B【分析】根据平行线的性质,即可得出1=ADC=31,再根据等腰直角三角形ADE中,ADE=45,即可得到答案【详解】解:ABCD,1=ADC=30,又直角三角形ADE中,ADE=45,1=45-31=14,故选:B【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等8A【分析】先求出A1,A2,A3,A8,发现规律,根据规律求出A20的坐标即可【详解】解:一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上,A1(-2,0)从点A2解析:A【分析】先求出A1,A2,A3,A8
11、,发现规律,根据规律求出A20的坐标即可【详解】解:一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上,A1(-2,0)从点A2开始, 由点再向正北方向走到达点,A2(-2,4),由点再向正东方向走到达点,A3(6-2,4)即(4,4),由点再向正南方向走到达点,A4(4,4-8)即(4,-4),由点A4再向正西方向走到达点,A5(4-10,-4)即(-6,-4),由点A5再向正北方向走到达点A6,A6(-6,12-4)即(-6,8),由点A6再向再向正东方向走到达点A7,A7(14-6,8)即(8,8),由点A7再向正南方向走到达点,A8(8,8-16)即(8,-8),观察图象可
12、知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限且横坐标与下标相同,因为,所以在第四象限,坐标为故选择A【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键九、填空题99【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.十、填空题10(3,1)【分析】根据“关于x轴对称的点,横坐标
13、相同,纵坐标互为相反数”解答即可【详解】解:点P(3,1)点P关于x轴对称的点Q(3,1)故答案为(3,1)【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可【详解】解:点P(3,1)点P关于x轴对称的点Q(3,1)故答案为(3,1)【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键十一、填空题1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首
14、先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数十二、填空题1230【分析】过点C作CFAB,
15、根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到解析:30【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到DCF=30,于是得到结论【详解】解:过点C作CFAB,ABDE,CFDE,BCF=ABC=70,DCF=180-CDE=40,BCD=BCF-DCF=70-40=30故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即同位角相等两直线平行,
16、内错角相等两直线平行,同旁内角互补两直线平行十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BEF=60;由
17、折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题143; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主解析:3; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法
18、是解题关键十五、填空题15(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐解析:(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐标为(4,3)故答案为:(4,3) 【点睛】本题考查点的坐标,利用数形结合思想解题是关键十六、填空题16(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射
19、后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,202163365,即点P2021的坐标是(4,3)故答案为:(4,3)【点睛】本题考查了生活中的轴对称现象,点的坐标解题的关键是能够正确找到循环数值,从而得到规律十七、解答题17(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(
20、2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)= ;(4)= =故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算十八、解答题18(1)或;(2)【分析】
21、(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或(2),解得解析:(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或(2),解得【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.十九、解答题19内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论【详解】解:(已知)(内错角
22、相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论【详解】解:(已知)(内错角相等,两直线平行),(两直线平行,同旁内角互补),(已知),(等式的性质),(同旁内角互补,两直线平行),(两直线平行,同位角相等),(已知),(等量代换),(同位角相等,两直线平行)故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键二十、解答题20(1)图见解析,;(2
23、)3.5;(3)点的坐标为或【分析】(1)依据点P(x0,y0)经平移后对应点为P1(x01,y02),可得平移的方向和距离,将ABC作同样的平移即可得到A1B解析:(1)图见解析,;(2)3.5;(3)点的坐标为或【分析】(1)依据点P(x0,y0)经平移后对应点为P1(x01,y02),可得平移的方向和距离,将ABC作同样的平移即可得到A1B1C1;(2)利用割补法进行计算,即可得到A1B1C1的面积;(3)设P(0,y),依据A1B1P的面积是1,即可得到y的值,进而得出点P的坐标【详解】解:(1)如图所示,即为所求;,;(2)的面积为:;(3)设,则,的面积是1,解得,点的坐标为或【点
24、睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,解析:【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,可得2a19, a3b1-8;解得:a5,b-4;又67,可得c6;
25、a2bc3;a2bc的算术平方根为【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法二十二、解答题228;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即
26、x2=a,那么这个正数x叫做a的算术平方根记为二十三、解答题23(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结
27、论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键二十四、解答题24(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,
28、140POQOPQ+PQF【分析】(1)如图1,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,CPab,AOGACP
29、,BCP+CEF180,BCP180CEF,ACP+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,OPQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOPOPQ+PQF,140
30、POQOPQ+PQF【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键二十五、解答题25(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC解析:(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC,求出BAD在ABC中利用三角形内角和定理求出ABC=ACB=40,根据三角形外角的性质得出
31、ADC=ABC+BAD=100,在ADE中利用三角形内角和定理求出ADE=AED=70,那么CDE=ADC-ADE=30;(2)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACB-AED=,再由BAD=DAC-BAC得到BAD=n-100,从而得出结论BAD=2CDE;(3)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACD-AED=,再由BAD=BAC+DAC得到BAD=100+n,从而得出结论BAD=2CDE【详解】解:(1)BAD=BAC-D
32、AC=100-40=60在ABC中,BAC=100,ABC=ACB,ABC=ACB=40,ADC=ABC+BAD=40+60=100DAC=40,ADE=AED,ADE=AED=70,CDE=ADC-ADE=100-70=30故答案为60,30(2)BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40在ADE中,DAC=n,ADE=AED=,ACB=CDE+AED,CDE=ACB-AED=40-=,BAC=100,DAC=n,BAD=n-100,BAD=2CDE(3)成立,BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40,ACD=140在ADE中,DAC=n,ADE=AED=,ACD=CDE+AED,CDE=ACD-AED=140-=,BAC=100,DAC=n,BAD=100+n,BAD=2CDE【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键