1、人教版七年级下册数学期末综合复习试卷及答案一、选择题1如图,与是( )A同位角B内错角C同旁内角D对顶角2下列现象中,()是平移A“天问”探测器绕火星运动B篮球在空中飞行C电梯的上下移动D将一张纸对折3点在平面直角坐标系中所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图,的角平分线的反向延长线和是角平分线交于点,则等于( )A42B44C72D766下列说法不正确的是()A的
2、平方根是B9是81的平方根C0.4的算术平方根是0.2D37直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是()ABCD8如图,已知在平面直角坐标系中,点A坐标是(1,1)若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),每个点的横纵坐标都是整数,按此规律一直运动下去,则a2016+a2017+a2018的值为( )A1009B1010C1513D2521九、填空题9若则 _.十、填空题10将点先关于x轴对称,再关于y轴对称的点的坐标为_十一、填空题11如图,DB是的高,AE是角平分线,则_十二、填空题12如图
3、,ABDE,ADAB,AE平分BAC交BC于点F,如果CAD=24,则E_十三、填空题13把一张长方形纸条按如图所示折叠后,若,则_;十四、填空题14将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是_十五、填空题15已知点,且点到两坐标轴的距离相等,则点的坐标是_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,那么点的坐标为_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的的值:(1);(2)十九、解答题19如图,四边形 ABCD 中,A = C = 90 ,BE ,
4、DF 分别是ABC ,ADC 的平分线 试说明 BE / DF 请补充说明过程,并在括号内填上相应理由解:在四边形 ABCD 中, A + ABC + C + ADC = 360A = C = 90(已知)ABC +ADC= ,BE , DF 分别是ABC , ADC 的平分线,1 =ABC , 2= ADC ( )1+2= (ABC + ADC) 1+2= 在FCD 中, C = 90 ,DFC + 2 = 90 ( )1+2=90 (已证)1=DFC ( )BE DF ( )二十、解答题20已知:如图,ABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ABC的顶点都在格点上),
5、点A,B,C的坐标分别为(1,0),(5,0),(1,5)(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ABC内部一点,平移ABC,点P随ABC一起平移,点A落在A(0,4),点P落在P(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为,即23,所以的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 ;(2)如果的小数部
6、分为a,的整数部分为b,求a+b的值二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2
7、F,DEAPEADEB,补全图形后,求EPD的度数二十四、解答题24已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段上),连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明(2)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)二十五、解答题25如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:
8、如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、选择题1A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可【详解】解:根据图象,A与1是两直线被第三条直线所截得到的两角,因而A与1是同位角, 故选:A【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单2C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把
9、一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意; B. 篮球在空中飞行不是平移,故此选项不符合题意;C. 电梯的上下移动是平移,故此选项符合题意; D. 将一张纸对折不是平移,故此选项不符合题意故选:C【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别3B【分析】根据坐标的特点即可求解【详解】点在平面直角坐标系中所在的象限是第二象限故选B【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判
10、断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面内不平行的两条直线一定相交;故本小题错误,两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5B【分析】过F作FHAB,依据平行线的性质,可设ABF=EBF=BFH,DCG=ECG=CFH,根据四边形内角和以及E-F=48,即可得到E的度数【详解】解:如图,过F作FHAB,ABCD,FHABCD,DCE的角平分
11、线CG的反向延长线和ABE的角平分线BF交于点F,可设ABF=EBF=BFH,DCG=ECG=CFH,ECF=180-,BFC=BFH-CFH=-,四边形BFCE中,E+BFC=360-(180-)=180-(-)=180-BFC,即E+2BFC=180,又E-BFC=48,E =BFC+48,由可得,BFC+48+2BFC=180,解得BFC=44,故选:B【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补6C【分析】根据立方根与平方根的定义即可求出答案【详解】解:0.4的算术平方根为 ,故C错误,故选
12、C【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型7D【分析】直接利用平行线性质解题即可【详解】解:直尺的两边互相平行, 1=2,3=4, 三角板的直角顶点在直尺上, 2+4=90, A,B,C正确 故选D【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a20171009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数解析:B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017
13、1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果【详解】解:由直角坐标系可知A(1,1),B(2,1),C(3,2),D(4,2),即a11,a21,a32,a41,a53,a62,a74,a82,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a20171009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,a2016504,201845042,a2018505,故 a2016+a2017+a20181010
14、,故选:B【点睛】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键九、填空题9【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.解析:【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.十、填空题10(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设
15、关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数十一、填空题11【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,BA
16、E=26,FAD=B解析:【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,BAE=26,FAD=BAE=26,DB是ABC的高,AFD=90FAD=9026=64,BFE=AFD=64.故答案为64.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题1233【分析】由题意易得BAD=90,则有BAC=66,然后根据角平分线的定义可得BAE=33,进而根据平行线的性质可求解【详解】解:ADAB,BAD=90,C解析:33【分析】由题意易得BAD=
17、90,则有BAC=66,然后根据角平分线的定义可得BAE=33,进而根据平行线的性质可求解【详解】解:ADAB,BAD=90,CAD=24,BAC=66,AE平分BAC,BAE=CAE=33,ABDE,E=BAE=33,故答案为33【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180
18、,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14【分析】根据数的排列方法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2
19、个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+19+9=199个数,即1,中第三个数 :,的相反数为故答案为【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现对于找规律的题目找准变化是关键十五、填空题15或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐
20、标为:或;故答案为:或解析:或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐标为:或;故答案为:或;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点十六、填空题16【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,归纳出点An的一般规律,从而可求得结果【详解】,根据点的平移规律,可分别得:,解析:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,归纳出点An的一般规
21、律,从而可求得结果【详解】,根据点的平移规律,可分别得:,2021=5054+1的横坐标为2505=1010,纵坐标为1即故答案为:【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运
22、算顺序依次计算即可;试题解析:原式=2+2-4=0 原式= 十八、解答题18(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键十九、解答题19见解析【分析】根据四边形的内角和,可得ABC+ADC=1
23、80,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判解析:见解析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判定BEDF【详解】在四边形ABCD中,A+ABC+C+ADC=360A=C=90,ABC+ADC=180(四边形的内角和是360),BE,DF分别是ABC,ADC的平分线,1 =ABC , 2= ADC(角平分线定义)1+2= (ABC + ADC) 1+2=90,在FCD中,C=90,DFC+2=90(
24、三角形的内角和是180),1+2=90(已证),1=DFC(等量代换),BEDF(同位角相等,两直线平行 )【点睛】本题主要考查了平行线的判定与性质,关键是掌握三角形、四边形的内角和,以及同位角相等,两直线平行二十、解答题20(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行
25、四边形的性质可求得线段PC扫过的面积【详解】解:(1)平面直角坐标系如图所示:(2)因为点A(1,0)落在A(0,4),同时点P(m,n)落在P(n,6),解得,点P的坐标为(1,2);如图,线段PC扫过的面积即为平行四边形PCCP的面积,线段PC扫过的面积为【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)3, 3;(2)1【分析】(1)根据解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3,解析:(1)3, 3;(2)1【分析】(1)根据解答即可;
26、(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3, 故答案为:3,3;(2)23,a2, 34,b3,a+b2+31【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根
27、据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根解析:(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的
28、性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FE
29、A+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在P
30、DE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键二十四、解答题24(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB
31、,1=2EMF=2+3,EMF=1+4EMF=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-AEM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,EMN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作M
32、PAB,过点N作NQAB,AEM+1=180,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键二十五、解答题25(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和
33、折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度