资源描述
八年级数学下册期末试卷(提升篇)(Word版含解析)
一、选择题
1.要使有意义,则实数的取值范围是( )
A. B. C. D.
2.下列各组数中,不能构成直角三角形的是( )
A.9、12、15 B.12、18、22 C.8、15、17 D.5、12、13
3.在四边形ABCD中,对角线AC与BD交于点O,下列条件一定能判定四边形ABCD为平行四边形的是( )
A.AD∥BC,AB=CD B.AO=OC,BO=OD
C.AD=CB,AB∥CD D.∠A=∠B,∠C=∠D
4.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )
A.众数是 B.中位数是 C.平均数是 D.方差是
5.若三角形的三边长分别是下列各组数,则能构成直角三角形的是( )
A.4,5,6 B.1,2, C.6,8,11 D.5,12,14
6.如图,四边形ABCD是菱形,点E、F分别在边BC、CD上,且BE=DF,AB=AE,若∠EAF=75°,则∠C的度数为( )
A.85° B.90° C.95° D.105°
7.如图1,为矩形的边上一点,点从点出发沿折线运动到点停止,点从点出发沿运动到点停止,它们的运动速度都是厘米/秒.现,两点同时出发,设运动时间为(秒),的面积为(cm2),若与的对应关系如图2所示,则矩形的面积是( )
A.cm2 B.72 cm2 C.84 cm2 D.56 cm2
8.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为( )
A.3 B.2 C. D.
二、填空题
9.二次根式有意义的条件是_______.
10.菱形的两条对角线分别为8、10,则菱形的面积为_____.
11.如图,则阴影小长方形的面积S=_____.
12.如图,在矩形中,对角线,交于点,若,,则的长为________.
13.一次函数图象过点日与直线平行,则一次函数解析式__________.
14.如图,在中,,,当________时,四边形是菱形.
15.甲从地出发以某一速度向地走去,同时乙从地出发以另一速度向地而行,如图中的线段、分别表示甲、乙离地的距离()与所用时间的关系.则、两地之间的距离为______,甲、乙两人相距时出发的时间为______.
16.在矩形ABCD中,,,将沿对角线BD对折得到,DE与BC交于F,则EF等于________.
三、解答题
17.计算:
(1);
(2);
(3)解方程组;
(4)解方程组.
18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米
(1)求墙的高度?
(2)若梯子的顶端下滑米,底端将水平动多少米?
19.如图,是规格为8×8的正方形的网格,请你在所给的网格中按下列要求操作:
(1)请在网格中建立直角坐标系,使A点坐标为,B点坐标为;
(2)在网格上,找一格点C,使点C与线段AB组成等腰三角形,这样的C点共有 个;
(3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,的周长是 ,面积是 .
20.如图,平行四边形的对角线、相较于点O,且,,.求证:四边形是矩形.
21.同学们,我们以前学过完全平方公式,a2±2ab+b2=(a±b)2,你一定熟练掌握了吧?现在我们又学习了平方根,那么所有的正数和0都可以看作是一个数的平方,比如:2=,3=,7=,02=0,那么我们利用这种思想方法计算下面的题:
例:求3的算术平方根
解:3=+1=+12=
∴3的算术平方根是
同学们,你看明白了吗?大胆试一试,相信你能做正确!
(1)
(2)
(3).
22.某网校规定:普通网上学习费用每小时4元.暑假为了促销,新推出两种优惠卡:
①金卡售价120元/张,凭此卡账号登录学习不再收费;
②银卡售价30元张,凭此卡账号登录学习按每小时2元收费.设登录学习时数为x(时),所需总费用为y(元).
(1)分别写出选择银卡登录、普通登录时,y与x之间的函数关系式;
(2)在同一个坐标系中,三种登录方式对应的函数图象如图所示,请求出点A、B、C的坐标: .
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
23.问题发现:
(1)如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB延长线上时,线段AC的长可取得最大值,则最大值为 (用含a,b的式子表示);
尝试应用:
(2)如图2所示,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,M、N分别为AB、AD的中点,连接MN、CE.AD=5,AC=3.
①请写出MN与CE的数量关系,并说明理由.
②直接写出MN的最大值.
(3)如图3所示,△ABC为等边三角形,DA=6,DB=10,∠ADB=60°,M、N分别为BC、BD的中点,求MN长.
(4)若在第(3)中将“∠ADB=60°”这个条件删除,其他条件不变,请直接写出MN的取值范围.
24.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线x轴于点C,且AB=BC.
(1)求直线BC的表达式
(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于点P,设点Q的横坐标为m,求的面积(用含m的代数式表示)
(3)在(2)的条件下,点M在y轴的负半轴上,且MP=MQ,若求点P的坐标.
25.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.
(1)求出直线的解析式;
(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.
(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据二次根式有意义的条件进行解答即可.
【详解】
解:∵有意义,
∴,
解得:,
故选:B.
【点睛】
本题考查了二次根式有意义得条件,熟知根号下为非负数是解题的关键.
2.B
解析:B
【分析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
【详解】
解:A、92+122=152,能构成直角三角形;
B、122+182≠222,不能构成直角三角形;
C、82+152=172,能构成直角三角形;
D、52+122=132,能构成直角三角形.
故选:B.
【点睛】
本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.B
解析:B
【解析】
【分析】
由平行四边形的判定方法分别对各个选项进行判断即可.
【详解】
A、由AD∥BC,AB=CD,不能判定四边形ABCD为平行四边形,故选项A不符合题意;
B、∵AO=OC,BO=OD,
∴四边形ABCD为平行四边形,
故选项B符合题意;
C、由AD=CB,AB∥CD,不能判定四边形ABCD为平行四边形,故选项C不符合题意;
D、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项D不符合题意;
故选:B.
【点睛】
本题考查了平行四边形的判定,关键是掌握平行四边形的各种判定方法.
4.D
解析:D
【解析】
【分析】
根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可
【详解】
根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7
其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;
这组数据的中位数为:6,故B选项正确,不符合题意;
这组数据的平均数为,故C选项正确,不符合题意;
这组数据的方差为:,故D选项不正确,符合题意.
故选D.
【点睛】
本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.
5.B
解析:B
【分析】
根据勾股定理逆定理:三角形三边长a、b、c若满足,则该三角形为直角三角形,将各个选项逐一代数计算即可得出答案.
【详解】
解:A选项:∵,∴4、5、6三边长无法组成直角三角形,故该选项错误;
B选项:∵,∴1、2、三边长可以组成直角三角形,故该选项正确;
C选项:∵,∴6、8、11三边长无法组成直角三角形,故该选项错误;
D选项:∵,∴5、12、14三边长无法组成直角三角形,故该选项错误,
故选:B.
【点睛】
本题主要考察了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
6.C
解析:C
【解析】
【分析】
由菱形的性质可得AB=AD,∠B=∠D,∠C=∠BAD,由“SAS”可证△ABE≌△ADF,可得∠DAF=∠BAE,由等腰三角形的性质和三角形内角和定理可求∠BAE=10°,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,∠C=∠BAD,
在△ABE和△ADF中,
∵,
∴△ABE≌△ADF(SAS),
∴∠DAF=∠BAE,
设∠BAE=∠DAF=x,
∴∠DAE=75°+x,
∵AD∥BC,
∴∠AEB=75°+x,
∵AB=AE,
∴∠B=∠AEB=75°+x,
∵∠BAE+∠ABE+∠AEB=180°,
∴x+75°+x+75°+x=180°,
∴x=10°,
∴∠BAD=95°,
∴∠C=95°,
故选:C.
【点睛】
本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,证明△ABE≌△ADF是解题的关键.
7.B
解析:B
【解析】
【分析】
过点E作EH⊥BC,由三角形面积求得EH=AB=6,由图2知,当x=14时,点P与点D重合,则AD=12,从而可得答案.
【详解】
从函数的图象和运动过程知:当点P运动到点E时,x=10,y=30
即BE=BQ=10,
过点E作EH⊥BC于点H,如图
则
解得:EH=6
∵四边形ABHE是矩形
∴AB=EH=6
在Rt△ABE中,由勾股定理得:
由图2知,当x=14时,点P与点D重合
即BE+ED=14
∴ED=14-BE=4
∴AD=AE+ED=8+4=12
∴矩形ABCD的面积为:12×6=72(厘米2)
故选:B.
【点睛】
本题考查了动点问题的函数图象,三角形的面积,勾股定理,矩形的判定与性质等知识,弄懂动点运动过程、数形结合是解答本题的关键.
8.D
解析:D
【分析】
设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.
【详解】
解:设点C的横坐标为m,
∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),
∵四边形ABCD为正方形,
∴BC∥x轴,BC=AB,
又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,
∴点B的坐标为(﹣,﹣3m),
∴﹣﹣m=﹣3m,
解得:k=,
经检验,k=是原方程的解,且符合题意.
故选:D.
【点睛】
本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.
二、填空题
9.x≥0且x≠9
【解析】
【分析】
根据二次根式有意义的条件:被开方数要大于等于0,以及分式有意义的条件:分母不为0,计算求解即可.
【详解】
解:∵二次根式有意义
∴且
∴且
故答案为:且.
【点睛】
本题主要考查了二次根式和分式有意义的条件,解题的关键在于能够熟练掌握相关知识点进行求解.
10.【解析】
【分析】
根据对角线的长度,利用面积公式即可求解.
【详解】
解:菱形的面积计算公式S=ab(a、b为菱形的对角线长)
∴菱形的面积S=×8×10=40,
故答案为: 40.
【点睛】
本题主要考查菱形的面积,掌握菱形的面积公式是解题的关键.
11.30
【解析】
【分析】
由勾股定理求出小长方形的长,再由长方形的面积公式进行计算.
【详解】
由勾股定理得:=10,
∴阴影小长方形的面积S=3×10=30;
故答案是:30.
【点睛】
考查了勾股定理;解题关键是利用勾股定理求出小长方形的长.
12.D
解析:
【分析】
由题意易得OD=OC,∠DOC=60°,进而可得△DOC是等边三角形,然后问题可求解.
【详解】
解:∵四边形ABCD是矩形,BD=12,
∴,
∵∠AOD=120°,
∴∠DOC=60°,
∴△DOC是等边三角形,
∴;
故答案为:6.
【点睛】
本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键.
13.
【解析】
【分析】
设一次函数解析式为y=kx+b,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
【详解】
解:设一次函数解析式为y=kx+b,
把(0,-2)代入得b=-2,
∵直线y=kx+b与直线y=2-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-2.
故答案为:y=-3x-2.
【点睛】
本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
14.A
解析:16
【分析】
当四边形ABCD为菱形时,则有AC⊥BD,设AC、BD交于点O,结合平行四边形的性质可得AO=6,AB=10,利用勾股定理可求得BO,则可求得BD的长.
【详解】
解:如图,设AC、BD交于点O,
当四边形ABCD为菱形时,则AC⊥BD,
∵四边形ABCD为平行四边形,
∴AO=AC=6,且AB=10,
∴在Rt△AOB中,BO,
∴BD=2BO=16,
故答案为:16.
【点睛】
本题主要考查菱形的性质,掌握菱形的对角线互相垂直且平分是解题的关键.
15.2或3
【分析】
①利用路程的函数图象解得的解析式,再求的值;
②根据题意列方程解答即可.
【详解】
解:①设=kx+b,
∵经过点P(2.5,7.5),(4,0).
∴ ,
解得 ,
∴=
解析:2或3
【分析】
①利用路程的函数图象解得的解析式,再求的值;
②根据题意列方程解答即可.
【详解】
解:①设=kx+b,
∵经过点P(2.5,7.5),(4,0).
∴ ,
解得 ,
∴=−5x+20,当x=0时,=20.
答:AB两地之间的距离为20km.
②根据题意得:或,
解得:或.
即出发2小时或3小时,甲、乙两人相距
【点睛】
此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键.
16.【分析】
根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值.
【详解】
解:由折叠可知:
AB=BE=CD=3,
解析:
【分析】
根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值.
【详解】
解:由折叠可知:
AB=BE=CD=3,∠E=∠A=90°,DE=AD=4,∠ADB=∠EDB,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∴∠CBD=∠EDB,
∴BF=DF,设BF=DF=x,
则CF=4-x,在△CDF中,
,即,
解得:x=,即DF=,
∴EF=DE-DF==,
故答案为:.
【点睛】
本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据二次根式的性质化简各项,然后再合并同类项即可;
(2)先结合平方差公式和完全平方公式计算,再去括号即可;
(3)利用代入消元法求解即可;
(4)利
解析:(1);(2);(3);(4)
【分析】
(1)根据二次根式的性质化简各项,然后再合并同类项即可;
(2)先结合平方差公式和完全平方公式计算,再去括号即可;
(3)利用代入消元法求解即可;
(4)利用加减消元法求解即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)
由②可得:,
将代入①得:,
解得:,
∴,
∴原方程组解为:;
(4)
由①×4-②×3可得:,
解得:,
将代入①可得:,
解得:,
∴原方程组解为:.
【点睛】
本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键.
18.(1)4米;(2)1米
【分析】
(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的
解析:(1)4米;(2)1米
【分析】
(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.
【详解】
解:(1)根据勾股定理:
墙的高度(米;
(2)梯子下滑了1米,即梯子距离地面的高度(米.
根据勾股定理:(米
则(米,即底端将水平动1米.
答:(1)墙的高度是4米;
(2)若梯子的顶端下滑1米,底端将水平动1米.
【点睛】
本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长.
19.(1)见解析;(2)10;(3),4.
【解析】
【分析】
(1)根据A点坐标为,B点坐标为特点,建立直角坐标系;
(2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB
解析:(1)见解析;(2)10;(3),4.
【解析】
【分析】
(1)根据A点坐标为,B点坐标为特点,建立直角坐标系;
(2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上,据此画图;
(3)根据题意,符合条件的点是点,结合勾股定理解得,即可解得周长,再由解得其面积.
【详解】
解:(1)如图建立直角坐标系,
(2)分三种情况讨论,如图,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上,
符合条件的点C共有10个,
故答案为:10;
(3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,符合条件的点是点
故答案为:,4.
【点睛】
本题考查网格与勾股定理、网格中画等腰三角形、等腰三角形的性质等知识,是重要考点,掌握相关知识是解题关键.
20.见解析
【分析】
先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形.
【详解】
证明:∵四边形是平行四边形且
∴平行四边形是菱形
解析:见解析
【分析】
先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形.
【详解】
证明:∵四边形是平行四边形且
∴平行四边形是菱形
∴,即
又∵,.
∴四边形是平行四边形,
∴平行四边形是矩形.
【点睛】
本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1)+1;(2)4+;(3)﹣1.
【解析】
【详解】
试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得.
试题解析:(1);
(2)=4+
解析:(1)+1;(2)4+;(3)﹣1.
【解析】
【详解】
试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得.
试题解析:(1);
(2)=4+;
(3)
=++++
=﹣1+﹣+﹣+﹣+﹣
=﹣1.
22.(1)普通登录时,y与x之间的函数关系式为y=4x;银卡登录时,y与x之间的函数关系式为y=2x+30;(2)A(0,30);B(15,60);C(45,120);(3)见解析
【分析】
(1)弄清
解析:(1)普通登录时,y与x之间的函数关系式为y=4x;银卡登录时,y与x之间的函数关系式为y=2x+30;(2)A(0,30);B(15,60);C(45,120);(3)见解析
【分析】
(1)弄清题意,结合图象易知普通登录时为正比例函数图象,银卡为一次函数图象,依题意写出即可;
(2)根据(1)的结论列方程组可得点B的坐标,根据银卡登录y与x之间的函数关系式可得点A、C的坐标;
(3)先求出点D的坐标,再根据图象解答即可.
【详解】
解:(1)由题意可知,普通登录时,y与x之间的函数关系式为y=4x;
银卡登录时,y与x之间的函数关系式为y=2x+30;
(2)由题意可知,点A 的坐标为(0,30);
解方程组,得,
∴点B的坐标为(15,60);
由2x+30=120,解得x=45,
∴点C的坐标为(45,120).
故答案为:A(0,30);B(15,60);C(45,120);
(3)由4x=120,解得x=30,
∴点D的坐标为(30,120),
根据函数图象,可知:
当0<x<15时,选择购买普通票更合算;
当x=15时,选择购买银卡、普通票的总费用相同;
当15<x<45时,选择购买银卡更合算.
当x=45时,选择购买银卡和金卡更合算.
当x>45时,选择购买金卡更合算.
【点睛】
本题考查一次函数的应用,重点掌握一次函数的基本性质,能利用数形结合的思想方法是解题关键.
23.(1)a+b;(2)①EC=2MN,见解析;②MN的最大值为4;(3)MN=7;(4)2≤MN≤8
【分析】
(1)当点在的延长线上时,的值最大.
(2)①结论:.连接,再利用全等三角形的性质证明,
解析:(1)a+b;(2)①EC=2MN,见解析;②MN的最大值为4;(3)MN=7;(4)2≤MN≤8
【分析】
(1)当点在的延长线上时,的值最大.
(2)①结论:.连接,再利用全等三角形的性质证明,再利用三角形的中位线定理,可得结论.②根据,求出,,可得结论.
(3)如图3中,以为边向左作等边,连接,,过点作交的延长线于.证明,,求出可得结论.
(4)由(3)可知,,求出的取值范围,可得结论.
【详解】
解:(1),,
,
的最大值为,
故答案为:.
(2)①结论:.
理由:连接.
,
,
在和中,
,
,
,
,,
,
.
②,,
,,
,
,
,
的最大值为4.
(3)如图3中,以为边向左作等边,连接,,过点作交的延长线于.
,都是等边三角形,
,,,
,
在和中,
,
,
,
,,
,
,
,
,
,
,,
,
,
.
(4)由(3)可知,,
,
,
.
【点睛】
本题属于三角形综合题,考查了等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)
【解析】
【分析】
(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式;
(2)过点P作PG
解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)
【解析】
【分析】
(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式;
(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;
(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.
【详解】
解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴点B(0,8),点A(-4,0)
∴AO=4,BO=8,
∵AB=BC,BO⊥AC,
∴AO=CO=4,
∴点C(4,0),
设直线BC解析式为:y=kx+b,
由题意可得:,
解得:,
∴直线BC解析式为:y=-2x+8;
(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,
设△PBQ的面积为S,
∵AB=CB,
∴∠BAC=∠BCA,
∵点Q横坐标为m,
∴点Q(m,-2m+8)
∴HQ=2m-8,CH=m-4,
∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,
∴△AGP≌△CHQ(AAS),
∴AG=HC=m-4,PG=HQ=2m-8,
∵PE∥BC,
∴∠PEA=∠ACB,∠EPF=∠CQF,
∴∠PEA=∠PAE,
∴AP=PE,且AP=CQ,
∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,
∴△PEF≌△QCF(AAS)
∴S△PEF=S△QCF,
∴△PBQ的面积
=四边形BCFP的面积+△CFQ的面积
=四边形BCFP的面积+△PEF的面积
=四边形PECB的面积,
∴S=S△ABC-S△PAE=×8×8-×(2m-8)×(2m-8)=16m-2m2;
(3)如图2,连接AM,CM,过点P作PE⊥AC,
∵AB=BC,BO⊥AC,
∴BO是AC的垂直平分线,
∴AM=CM,且AP=CQ,PM=MQ,
∴△APM≌△CQM(SSS)
∴∠PAM=∠MCQ,∠BQM=∠APM=45°,
∵AM=CM,AB=BC,BM=BM,
∴△ABM≌△CBM(SSS)
∴∠BAM=∠BCM,
∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,
∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,
∴∠APM=∠AMP=45°,
∴AP=AM,
∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,
∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,
∴△APE≌△MAO(AAS)
∴AE=OM,PE=AO=4,
∴2m-8=4,
∴m=6,
∴P(-2,4).
【点睛】
本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
【分析】
(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2
解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
【分析】
(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.
(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.
(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.
【详解】
(1)如图1中,作BH⊥x轴于H.
∵A(1,0)、C(0,2),
∴OA=1,OC=2,
∵∠COA=∠CAB=∠AHB=90°,
∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,
∴∠ACO=∠BAH,
∵AC=AB,
∴△COA≌△AHB(AAS),
∴BH=OA=1,AH=OC=2,
∴OH=3,
∴B(3,1),
设直线BC的解析式为y=kx+b,则有,
解得:,
∴;
(2)如图2中,
∵四边形ABMN是平行四边形,
∴AN∥BM,
∴直线AN的解析式为:,
∴,
∴,
∵B(3,1),C(0,2),
∴BC=,
∴,
∴,
∴t=s时,四边形ABMN是平行四边形;
(3)如图3中,
如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,
连接OQ交BC于E,
∵OE⊥BC,
∴直线OE的解析式为y=3x,
由,解得:,
∴E(,),
∵OE=OQ,
∴Q(,),
∵OQ1∥BC,
∴直线OQ1的解析式为y=-x,
∵OQ1=OB=,设Q1(m,-),
∴m2+m2=10,
∴m=±3,
可得Q1(3,-1),Q3(-3,1),
当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,
易知线段OB的垂直平分线的解析式为y=-3x+5,
由,解得:,
∴Q2(,).
综上所述,满足条件的点Q坐标为:或或或.
【点睛】
本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
展开阅读全文