资源描述
人教七年级下册数学期末解答题培优题含答案
一、解答题
1.已知在的正方形网格中,每个小正方形的边长为1.
(1)计算图①中正方形的面积与边长.
(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和.
2.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
3.有一块面积为100cm2的正方形纸片.
(1)该正方形纸片的边长为 cm(直接写出结果);
(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?
4.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
5.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
二、解答题
6.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
7.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.
(1)求证:∠ABF+∠DCF=∠BFC;
(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;
(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.
8.如图①,将一张长方形纸片沿对折,使落在的位置;
(1)若的度数为,试求的度数(用含的代数式表示);
(2)如图②,再将纸片沿对折,使得落在的位置.
①若,的度数为,试求的度数(用含的代数式表示);
②若,的度数比的度数大,试计算的度数.
9.如图1,点在直线、之间,且.
(1)求证:;
(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;
(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).
10.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
三、解答题
11.已知,点为平面内一点,于.
(1)如图1,点在两条平行线外,则与之间的数量关系为______;
(2)点在两条平行线之间,过点作于点.
①如图2,说明成立的理由;
②如图3,平分交于点平分交于点.若,求的度数.
12.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:_________;
(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
13.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线.
(2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据).
14.课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,
∴∠B=∠EAB,∠C=
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
解题反思:
从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
15.如图1,在平面直角坐标系中,,且满足,过作轴于
(1)求三角形的面积.
(2)发过作交轴于,且分别平分,如图2,若,求的度数.
(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由.
四、解答题
16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
17.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.
(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;
(2)关于“准互余三角形”,有下列说法:
①在中,若,,,则是“准互余三角形”;
②若是“准互余三角形”,,,则;
③“准互余三角形”一定是钝角三角形.
其中正确的结论是___________(填写所有正确说法的序号);
(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.
18.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
19.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
20.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、解答题
1.(1)正方形的面积为10,正方形的边长为;(2)见解析
【分析】
(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;
(2)根据(1)的方法画
解析:(1)正方形的面积为10,正方形的边长为;(2)见解析
【分析】
(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;
(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.
【详解】
解:(1)正方形的面积为4×4-4××3×1=10
则正方形的边长为;
(2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点
∴正方形的边长为
∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示.
【点睛】
此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.
2.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
3.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算
解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;
故答案为:10;
(2)∵长方形纸片的长宽之比为4:3,
∴设长方形纸片的长为4xcm,则宽为3xcm,
则4x•3x=90,
∴12x2=90,
∴x2=,
解得:x=或x=-(负值不符合题意,舍去),
∴长方形纸片的长为2cm,
∵5<<6,
∴10<2,
∴小丽不能用这块纸片裁出符合要求的纸片.
【点睛】
本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
4.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
5.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
二、解答题
6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解
解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;
(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
7.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
(3)由(1)的结论和三角形的角的关系解答即可.
【详解】
证明:(1)∵AB∥CD,EF∥CD,
∴AB∥EF,
∴∠ABF=∠BFE,
∵EF∥CD,
∴∠DCF=∠EFC,
∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;
(2)∵BE⊥EC,
∴∠BEC=90°,
∴∠EBC+∠BCE=90°,
由(1)可得:∠BFC=∠ABE+∠ECD=90°,
∴∠ABE+∠ECD=∠EBC+∠BCE,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ECD=∠BCE,
∴CE平分∠BCD;
(3)设∠BCE=β,∠ECF=γ,
∵CE平分∠BCD,
∴∠DCE=∠BCE=β,
∴∠DCF=∠DCE﹣∠ECF=β﹣γ,
∴∠EFC=β﹣γ,
∵∠BFC=∠BCF,
∴∠BFC=∠BCE+∠ECF=γ+β,
∴∠ABF=∠BFE=2γ,
∵∠FBG=2∠ECF,
∴∠FBG=2γ,
∴∠ABE+∠DCE=∠BEC=90°,
∴∠ABE=90°﹣β,
∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,
∵BE平分∠ABC,
∴∠CBE=∠ABE=90°﹣β,
∴∠CBG=∠CBE+∠GBE,
∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,
整理得:2γ+β=55°,
∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.
【点睛】
本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.
8.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义
解析:(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解.
【详解】
解:(1)如图,由题意可知,
∴,
∵,
∴,
,
由折叠可知.
(2)①由题(1)可知 ,
∵,
,
再由折叠可知:
,
;
②由可知:,
由(1)知,
,
又的度数比的度数大,
,
,
,
.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
9.(1)见解析;(2)10°;(3)
【分析】
(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;
(2)过点E作HE∥CD,设 由(1)得AB∥CD
解析:(1)见解析;(2)10°;(3)
【分析】
(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;
(2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;
(3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出.
【详解】
(1)过点E作EF∥CD,如图,
∵EF∥CD,
∴
∴
∵,
∴
∴EF∥AB,
∴CD∥AB;
(2)过点E作HE∥CD,如图,
设
由(1)得AB∥CD,则AB∥CD∥HE,
∴
∴
又∵平分,
∴
∴
即
解得:即;
(3)过点N作NP∥CD,过点M作QM∥CD,如图,
由(1)得AB∥CD,则NP∥CD∥AB∥QM,
∵NP∥CD,CD∥QM,
∴,
又∵,
∴
∵,
∴
∴
又∵PN∥AB,
∴
∵,
∴
又∵AB∥QM,
∴
∴
∴.
【点睛】
本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.
10.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
三、解答题
11.(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥
解析:(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【详解】
解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
12.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×=72°,
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
13.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
故答案为垂;
(2)证明:平分,平分(已知),
,(角平分线的定义),
(已知),
(两直线平行,内错角相等),
(等量代换),
(等式性质),
(内错角相等,两直线平行).
【点睛】
本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
14.(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
解析:(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.
【详解】
解:(1)过点A作ED∥BC,
∴∠B=∠EAB,∠C=∠DCA,
又∵∠EAB+∠BAC+∠DAC=180°,
∴∠B+∠BAC+∠C=180°.
故答案为:∠DAC;
(2)过C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠D=∠FCD,
∵CF∥AB,
∴∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°;
(3)如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【点睛】
此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.
15.(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出
解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;
(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;
(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.
【详解】
解:(1)由题意知:a=−b,a−b+4=0,
解得:a=−2,b=2,
∴ A(−2,0),B(2,0),C(2,2),
∴S△ABC=;
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=×90°=45°;
(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,
把A(−2,0)、C(2,2)代入得:
,解得,
∴直线AC的解析式为y=x+1,
∴G点坐标为(0,1),
∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1,
∴P点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
四、解答题
16.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
17.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角
解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④
展开阅读全文