收藏 分销(赏)

2023年人教版中学七7年级下册数学期末学业水平及解析.doc

上传人:w****g 文档编号:1861274 上传时间:2024-05-10 格式:DOC 页数:25 大小:616.04KB 下载积分:10 金币
下载 相关 举报
2023年人教版中学七7年级下册数学期末学业水平及解析.doc_第1页
第1页 / 共25页
2023年人教版中学七7年级下册数学期末学业水平及解析.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
2023年人教版中学七7年级下册数学期末学业水平及解析 一、选择题 1.的值是() A.﹣3 B.3 C.±3 D.﹣9 2.下列生活现象中,属于平移的是( ). A.钟摆的摆动 B.拉开抽屉 C.足球在草地上滚动 D.投影片的文字经投影转换到屏幕上 3.在平面直角坐标系中,在第三象限的点是(  ) A.(-3,5) B.(1,-2) C.(-2,-3) D.(1,1) 4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a2的算术平方根是a;④的立方根是4.其中假命题的个数有(  ) A.1个 B.2个 C.3个 D.4个 5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( ) A. B. C. D. 6.若,,则( ) A.632.9 B.293.8 C.2938 D.6329 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.如图所示,在平面直角坐标系中,有若干个整数点,其排列顺序按图中箭头方向排列,如,,,,,根据这个规律探索可得,第2021个点的坐标为( ) A. B. C. D. 九、填空题 9.4的算术平方根是_____. 十、填空题 10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________. 十一、填空题 11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号) 十二、填空题 12.如图,直线a∥b,直角三角形的直角顶点在直线b上,已知∠1=48°,则∠2的度数是___度. 十三、填空题 13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____. 十四、填空题 14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 十五、填空题 15.在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是________. 十六、填空题 16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、、、…,那么点的坐标为_______. 十七、解答题 17.(1)计算: (2)解方程: 十八、解答题 18.求下列各式中的的值. (1); (2). 十九、解答题 19.如图.试问、、有什么关系? 解:,理由如下: 过点作 则______( ) 又∵, ∴____________( ) ∴____________( ) ∴( ) 即____________ 二十、解答题 20.已知,,. (1)在如图所示的直角坐标系中描上各点,画出三角形; (2)将向下平移2个单位长度,再向左平移2个单位长度得到三角形,画出平移后的图形并写出、、的坐标. 二十一、解答题 21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题; (1)介于连续的两个整数a和b之间,且a<b,那么a=   ,b=   ; (2)x是的小数部分,y是的整数部分,求x=   ,y=   ; (3)求的平方根. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 二十四、解答题 24.如图1,在平面直角坐标系中,,且满足,过作轴于 (1)求三角形的面积. (2)发过作交轴于,且分别平分,如图2,若,求的度数. (3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由. 二十五、解答题 25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据表示9的算术平方根,而9的算术平方根是3,进而得出答案. 【详解】 解:因为32=9, 所以=3, 故选:B. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的前提. 2.B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 解析:B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键. 3.C 【分析】 根据第三象限点的特征,依次判断即可. 【详解】 解:A:,,因此在第二象限,故错误; B:,,,因此在第四象限,故错误; C:,,,因此在第三象限,故正确; D:,,,因此在第一象限,故错误; 故答案为:C 【点睛】 本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键. 4.C 【分析】 利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项. 【详解】 解:①连接两点之间的线段的长度叫做这两点间的距离 ,故原命题错误,是假命题,符合题意; ②经过直线外一点,有且只有一条直线与这条直线平行, 正确,是真命题,不符合题意; ③a2的算术平方根是a(a≥0), 故原命题错误,是假命题,符合题意; ④的立方根是2, 故原命题错误,是假命题,符合题意; 假命题有3个, 故选:C. 【点睛】 本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键. 5.D 【分析】 由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1. 【详解】 解:由题意得:AG∥BE∥CD,CF∥BD, ∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180° ∴∠CFB=∠CDB ∴∠CAG=∠CDB 由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180° ∴∠CAG=∠CDB=∠1+∠BAG=2α ∴∠2=180°-2∠BDC=180°-4α 故选D. 【点睛】 本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解. 6.B 【分析】 把,再利用立方根的性质化简即可得到答案. 【详解】 解: , 故选: 【点睛】 本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键. 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.A 【分析】 通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标. 【详解】 解:将 解析:A 【分析】 通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标. 【详解】 解:将点(1,0)作为第1列, 将横坐标为2的点即点(2,0)和点(2,1)作为第2列, 将横坐标为3的点作为第3列,依次类推……; 则第n列的点的横坐标为n,令前n列一共有的点的个数为, 当时,, 则第2021个点在64列自下向上第4个数,则该点坐标为. 故选A. 【点睛】 本题综合考查了平面直角坐标系中的点的坐标规律,观察发现点的分布规律,即每一列点的变化规律以及运动方向或顺序等以及数形结合思想的运用成为解答本题的关键. 九、填空题 9.【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 解析:【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 十、填空题 10.【分析】 先将a,b求出来,再根据对称性求出坐标即可. 【详解】 根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3. P(2,﹣3)关于y轴对称的点(﹣2,﹣3) 故答案为: (﹣2,﹣ 解析: 【分析】 先将a,b求出来,再根据对称性求出坐标即可. 【详解】 根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3. P(2,﹣3)关于y轴对称的点(﹣2,﹣3) 故答案为: (﹣2,﹣3). 【点睛】 本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键. 十一、填空题 11.①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC 解析:①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC=D, ∴AD垂直平分C′C; ∴①,②都正确; ∵B=D, DC=D, ∴B=D= DC, ∴∠3=∠B,∠4=∠5, ∴∠3=∠4+∠5=2∠5即∠B=2∠BC; ∴③错误; 根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3, ∵∠ACB的角平分线交AD于点E, ∴2(∠6+∠5)=2∠B, ∴ ∴D ∥EC ∴④正确; 故答案为:①②④. 【点睛】 本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键. 十二、填空题 12.42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点 解析:42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点睛】 本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 十三、填空题 13.30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º 解析:30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º, ∴∠DNM=∠BMN=75º, ∵将矩形ABCD沿MN折叠,使点B与点D重合, ∴∠BMN=∠NMD=75º, ∴∠BMD=150º, ∴∠AMD=30º, 故答案为:30º. 【点睛】 本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键. 十四、填空题 14.或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1 解析:或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1, ∵M{3,2x+1,4x-1}=min{2,-x+3,5x}, ∴有如下三种情况: ①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立; ②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立; ③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立, ∴x=或, 故答案为或. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解. 十五、填空题 15.(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】 ∵点到横轴的距离为,到纵轴的距离为, 解析:(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】 ∵点到横轴的距离为,到纵轴的距离为, ∴|y|=2,|x|=3, 由M是第二象限的点,得: x=−3,y=2. 即点M的坐标是(−3,2), 故答案为:(−3,2). 【点睛】 此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零. 十六、填空题 16.【分析】 结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解. 【详解】 结合图像可知,纵坐标每四个点一个循环, … 解析: 【分析】 结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解. 【详解】 结合图像可知,纵坐标每四个点一个循环, ……1, 是第七个周期的第一个点, 每一个周期第一点的坐标为: ,, , , (12,1). 故答案为:(12,1). 【点睛】 本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键. 十七、解答题 17.(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = 解析:(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = =; (2), 去分母,可得:3(x+1)-6=2(2-3x), 去括号,可得:3x+3-6=4-6x, 移项,可得:3x+6x=4-3+6, 合并同类项,可得:9x=7, 系数化为1,可得:x=. 【点睛】 此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1. 十八、解答题 18.(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或 解析:(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或; (2), , , , . 【点睛】 本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解. 十九、解答题 19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE 【分析】 过点作,则∠1,同理可以得到∠2,由此即可求解. 【详解】 解:, 解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE 【分析】 过点作,则∠1,同理可以得到∠2,由此即可求解. 【详解】 解:,理由如下: 过点作, 则∠1(两直线平行,内错角相等), 又∵,, ∴DE∥CF(平行于同一条直线的两直线平行), ∴∠2(两直线平行,内错角相等) ∴(等量代换) 即∠BCE, 故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE. 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2)见解析,,, 【分析】 (1)依据A(0,1),B(2,0),C(4,3),即可画出△ABC; (2)依据△ABC向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进 解析:(1)见解析;(2)见解析,,, 【分析】 (1)依据A(0,1),B(2,0),C(4,3),即可画出△ABC; (2)依据△ABC向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进而得到点A1,B1,C1的坐标. 【详解】 解:(1)如图,三角形即为所画, (2)如图, 即为所画, 、、的坐标 :,, 【点睛】 本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1),;(2);(3) 【分析】 (1)根据的范围确定出、的值; (2)求出,的范围,即可求出、的值,代入求出即可; (3)将代入中即可求出. 【详解】 解:(1), , ,, 故答案是:,; ( 解析:(1),;(2);(3) 【分析】 (1)根据的范围确定出、的值; (2)求出,的范围,即可求出、的值,代入求出即可; (3)将代入中即可求出. 【详解】 解:(1), , ,, 故答案是:,; (2), ,, 的小数部分为:, 的整数部分为:3; 故答案是:; (3), , 的平方根为:. 【点睛】 本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质 解析:(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 二十四、解答题 24.(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出 解析:(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4; (2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°; (3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算. 【详解】 解:(1)由题意知:a=−b,a−b+4=0, 解得:a=−2,b=2, ∴ A(−2,0),B(2,0),C(2,2), ∴S△ABC=; (2)∵CB∥y轴,BD∥AC, ∴∠CAB=∠ABD, ∴∠3+∠4+∠5+∠6=90°, 过E作EF∥AC, ∵BD∥AC, ∴BD∥AC∥EF, ∵AE,DE分别平分∠CAB,∠ODB, ∴∠3=∠4=∠1,∠5=∠6=∠2, ∴∠AED=∠1+∠2=×90°=45°; (3)存在.理由如下: 设P点坐标为(0,t),直线AC的解析式为y=kx+b, 把A(−2,0)、C(2,2)代入得: ,解得, ∴直线AC的解析式为y=x+1, ∴G点坐标为(0,1), ∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1, ∴P点坐标为(0,3)或(0,−1). 【点睛】 本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等. 二十五、解答题 25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出 解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可; (2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可. 【详解】 (1)当点与点、在一直线上时,作图如下, ∵AB∥CD,∠FHP=60°,, ∴=∠FHP=60°, ∴∠EFD=180°-∠GEP=180°-60°=120°, ∴∠PFD=120°, 故答案为:120°; (2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 证明:根据点P是动点,分三种情况讨论: ①当点P在AB与CD之间时, 过点P作PQ∥AB,如下图, ∵AB∥CD, ∴PQ∥AB∥CD, ∴∠AEP=∠EPQ,∠CFP=∠FPQ, ∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP, 即∠EPF =∠AEP+∠CFP; ②当点P在AB上方时,如下图所示, ∵∠AEP=∠EPF+∠EQP, ∵AB∥CD, ∴∠CFP=∠EQP, ∴∠AEP=∠EPF+∠CFP; ③当点P在CD下方时, ∵AB∥CD, ∴∠AEP=∠EQF, ∴∠EQF=∠EPF+∠CFP, ∴∠AEP=∠EPF+∠CFP, 综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP, 故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 【点睛】 本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服