1、人教版中学七年级下册数学期末测试(含答案)(1)一、选择题1如图,下列说法不正确的是( )A和是同旁内角B和是内错角C和是同位角D和是同旁内角2在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )ABCD3在下列所给出坐标的点中,在第二象限的是()A(0,3)B(2,1)C(1,2)D(1,2)4命题:对顶角相等;过一点有且只有一条直线与已知直线平行;垂直于同一条直线的两条直线平行:同旁内角互补其中错误的有( )A1个B2个C3个D4个5如图,直线,点分别在直线上,P为两平行线间一点,那么等于( )ABCD6如图,下列各数中,数轴上点A表示的可能是( )A4的算术平方根B4的
2、立方根C8的算术平方根D8的立方根7如图,交于点,平分,则的度数为( )A60B55C50D458如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(2 ,1)B(1,1)C(2,0)D(2,0)九、填空题9的平方根是_十、填空题10已知点与点关于轴对称,则的值为_十一、填空题11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度十二、填空题12如图,已知
3、直线EFMN垂足为F,且1138,则当2等于_时,ABCD十三、填空题13如图a是长方形纸带,将纸带沿 EF折叠成图b,再沿BF折叠成图c,若AEF=160,则图 c 中的CFE的度数是_度十四、填空题14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_十五、填空题15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.十六、填空题16如图,在平面直角坐标系中:A(1,1),B(1,1),C(1,
4、3),D(1,3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是_十七、解答题17(1)计算:(2)计算: (3)计算:(4)计算:十八、解答题18求下列各式中x的值:(1)9x2250;(2)(x3)3270十九、解答题19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20已知在平面直角坐标系中有三点,请回答如下问题:(1)在平面直角坐标系内描出、,连接三边得到;(2)将三点向下平移2个单位长
5、度,再向左平移1个单位,得到;画出,并写出、三点坐标;(3)求出的面积二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题:(1)的整数部分是_,小数部分是_;(2)若设整数部分是,小数部分是,求的值.二十二、解答题22(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“”或“”或“”号);(3
6、)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?二十三、解答题23问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之间的数量关系并证明二十四、解答题24已知:直线,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上D,E为直线上的两个动点,点D在点E的左侧,连接
7、AD,AE,满足AEDDAE点M在上,且在点B的左侧(1)如图1,若BAD25,AED50,直接写出ABM的度数 ; (2)射线AF为CAD的角平分线 如图2,当点D在点B右侧时,用等式表示EAF与ABD之间的数量关系,并证明; 当点D与点B不重合,且ABMEAF150时,直接写出EAF的度数 二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请
8、说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1B解析:B【分析】根据同旁内角、内错角、同位角的概念判断即可【详解】解:如图,A1和A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B2和B不是内错角,说法错误,故此选项符合题意;C3和A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D4和C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键2
9、D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形
10、状、大小和方向3B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可【详解】解:A.(0,3)在y轴上,故不符合题意;B.(2,1)在第二象限,故符合题意;C.(1,2) 在第四象限,故不符合题意;D.(1,2) 在第三象限,故不符合题意;故选B【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为04C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可【详
11、解】解:对顶角相等,原命题正确; 过直线外一点有且只有一条直线与已知直线平行,原命题错误;在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;两直线平行,同旁内角互补,原命题错误故选:C【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键5A【分析】过点P作PEa则可得出PEab,结合“两直线平行,内错角相等”可得出2=AMP+BNP,再结合邻补角的即可得出结论【详解】解:过点P作PEa,如图所示PEa,ab,PEab,AMP=MPE,BNP=NPE,2=MPE+NPE=AMP+BNP1+AMP=180,3+BNP=180,1+2+3=180+1
12、80=360故选:A【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出2=AMP+BNP本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键6C【详解】解:由题意可知4的算术平方根是2,4的立方根是 2, 8的算术平方根是, 23,8的立方根是2,故根据数轴可知,故选C7C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得【详解】, 又,平分,故选:C【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点8B【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲
13、与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);解析:B【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1);
14、第二次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在A点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:B【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点九、填空题9【详解】【分析】先确定,再根据平方根定义可得的平
15、方根是.【详解】因为,6的平方根是,所以的平方根是.故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示解析:【详解】【分析】先确定,再根据平方根定义可得的平方根是.【详解】因为,6的平方根是,所以的平方根是.故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义.十、填空题10-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:解析:-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(
16、a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:-1【点睛】本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系十一、填空题11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD是ABC的一条角平分线,ABD=29,ADB=1805029=101
17、.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.十二、填空题1248【分析】先假设,求得34,由1=138,根据邻补角求出3,再利用即可求出2的度数.【详解】解:若AB/CD,则34,又1+3180,1138,解析:48【分析】先假设,求得34,由1=138,根据邻补角求出3,再利用即可求出2的度数.【详解】解:若AB/CD,则34,又1+3180,1138,3442;EFMN,2+490,248;故答案为:48【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题13120【分析】先根据平行线的性质,设,根据图形
18、折叠的性质得出,再由三角形外角的性质解得,再由平行线的性质得出GFC,最后根据即可解题【详解】折叠DEF,解析:120【分析】先根据平行线的性质,设,根据图形折叠的性质得出,再由三角形外角的性质解得,再由平行线的性质得出GFC,最后根据即可解题【详解】折叠DEF,故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题148【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解
19、析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).十六、填空题16【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1,1),C(1,3),D(1,3),四边形ABC
20、D的周长为2+4+2+4=解析:【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1,1),C(1,3),D(1,3),四边形ABCD的周长为2+4+2+4=12,细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标故答案为:【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型十七、解答题17(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1);(2);
21、(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可【详解】解:(1)(2)(3)(4)【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识十八、解答题18(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【
22、详解】(1)解:(2)解:【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键十九、解答题19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角
23、相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可【详解】解:(1)如图:(2)平移后如图:平移后坐标分
24、别为:(-4,-2)、(4,2)、(0,3);(3)的面积: 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键二十一、解答题21(1)2,;(2)【分析】(1)利用求解;(2)由于,则,然后计算【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,【点睛】本题考查了解析:(1)2,;(2)【分析】(1)利用求解;(2)由于,则,然后计算【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键二十二、解答题22(1);(2);(3)不能裁剪出,详见解析【
25、分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,大正方形的边长
26、为cm,(2),设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,450400,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查二十三、解答题23(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=解析:(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在
27、之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=113;(2)过过作交于,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:点P在BA的延长线上,当在之间时(点不与点,重合),根据平行线的性质即可得出答案【详解】解:(1)过作,;(2),理由如下:如图3,过作交于,又;(3)当在延长线时(点不与点重合),;理由:如图4,过作交于,又,;当在之间时(点不与点,重合),理由:如图5,过作交于,又【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角二十四、解答题24
28、(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,解析:(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,运用角的等量代换换算即可【详解】解:(1)设在上有一点N在点A的右侧,如图所示:,(2)证明:设,为的角平分线, 当点在点右侧时,如图:由得:又当点在点左侧,在右侧时,如图:为的角平分线,又当点和在点左侧时,设在上有一点在点的右侧如图
29、:此时仍有,综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点
30、之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决