1、八年级下册数学漳州数学期末试卷测试卷附答案一、选择题1当x0时,下列式子有意义的是( )ABCD2下列各组数中,不能构成直角三角形的一组是( )A3,4,5B1,C2,2,3D5,12,133四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A若AOOC,则ABCD是平行四边形B若ACBD,则ABCD是平行四边形C若AOBO,CODO,则ABCD是平行四边形D若AOOC,BOOD,则ABCD是平行四边形4学校统计教师每周学习党史时间,随机抽查甲,乙和丙三位教师,他们的平均学习时间为80分钟,甲和乙的学习时间分别是75分钟、95分钟,则丙的学习时间为( )A70分钟B75分钟C80
2、分钟D85分钟5如图,在平面直角坐标系中有一矩形OABCO为坐标原点,、,D为OA的中点,P为BC边上一点,若为等腰三角形,则所有满足条件的点P有几个()A1个B2个C3个D4个6如图,在菱形ABCD中,A110,E,F分别是边AB和BC的中点,EPCD于点P,则FPC()A35B45C50D557如图,在平行四边形纸片ABCD中,对角线AC与BD相交于点E,AEB45,BD4,将纸片沿对角线AC对折,使得点B落在点B的位置,连接DB,则DB的长为()A2B2C4D158货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了
3、20分钟修好车后,轿车按原来速度的继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:货车的速度为1500米/分;点D的坐标为;图中a的值是,其中正确的结论有()个A1B2C3D4二、填空题9若,则a与3的大小关系是_10已知菱形ABCD的面积为24,AC6,则AB_11直角三角形的直角边长分别为,斜边长为,则_12如图,矩形的对角线与相交点,分别为,的中点,则的长度为_13请你写出一个一次函数的解析式,使其满足以下要求:图象经过;随增大而减小.该解析式可以是_14如图,已知四边形ABCD是
4、平行四边形,请你添加一个条件使它成为菱形这个条件为_15如图,在平面直角坐标系中,点A1,A2,A3,都在x轴正半轴上,点B1,B2,B3,都在直线上,A1B1A2,A2B2A3,A3B3A4,都是等边三角形,且OA11,则点B6的纵坐标是_16如图,中,/轴,点A的坐标为,点D的坐标为,点B在第四象限,点G是AD与y轴的交点,点P是CD边上不与点C,D重合的一个动点,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,点P的坐标为_三、解答题17解下列各题计算:(1);(2);(3);(4)18去年某省将地处,两地的两所大
5、学合并成了一所综合性大学,为了方便,两地师生的交往,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)19如图,是规格为88的正方形的网格,请你在所给的网格中按下列要求操作:(1)请在网格中建立直角坐标系,使A点坐标为,B点坐标为;(2)在网格上,找一格点C,使点C与线段AB组成等腰三角形,这样的C点共有 个;(3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,的周长是 ,面积是 20如图1,两个全等的直角三角板ABC
6、和DEF重叠在一起,其中ACB=DFE=90,固定ABC,将DEF沿线段AB向右平移(即点D在线段AB上)回答下列问题:(1)如图2,连接CF,四边形ADFC的形状一定是_形;(2)如图3,当点D移动到AB的中点时,连接DC,CF,FB求证:四边形CDBF是菱形21已知实数a,b满足:b2=1+,且|b|+b0(1)求a,b的值;(2)利用公式,求+22工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍两组各自加工零件的数量x(件)与时间y(时)之间的函数图象如图所示(1)甲组的工作效率是 件/时;(2)求出图中a的值及乙组更换
7、设备后加工零件的数量y与时间x之间的函数解析式(3)当x为何值时,两组一共生产570件23图1,在正方形中,为线段上一点,连接,过点作,交于点将沿所在直线对折得到,延长交于点(1)求证:(2)若,求的长(3)如图2,延长交的延长线于点,若,记的面积为,求与之间的函数关系式24(1)探究对于函数y|x|,当x0时,yx;当x0时,yx在平面直角坐标系中画出函数图象,由图象可知,函数y|x|的最小值是 (2)应用对于函数y|x1|x2|当x1时,y ;当x2时,y ;当2x1时,y 在平面直角坐标系中画出函数图象,由图象可知,函数y|x1|x2|的最小值是 (3)迁移当x 时,函数y|x1|2x1
8、|3x1|8x1|取到最小值(4)反思上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种25如图,ABC中,BABC,COAB于点O,AO4,BO6(1)求BC,AC的长;(2)若点D是射线OB上的一个动点,作DEAC于点E,连结OE当点D在线段OB上时,若AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长设DE交直线BC于点F,连结OF,CD,若SOBF:SOCF1:4,则CD的长为 (直接写出结果)【参考答案】一、选择题1C解析:C【分析】根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可;【详解】解:当x0时, 没有意义,则没有意义;当x0时, ,则没有
9、意义;当x0时,x-1=-1,则没有意义;故选:C【点睛】本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键2C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、32+4252,能构成直角三角形;B、12+()2()2,能构成直角三角形;C、22+2232,不能构成直角三角形D、52+122132,能构成直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可3D解析:D【解析】【分析】根据平行四边形的判定条件进行逐一判断即可.【详解
10、】解:AOOC,BOOD,四边形的对角线互相平分D能判定ABCD是平行四边形若AOBO,CODO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误,若AOOC,条件不足,无法明四边形ABCD是平行四边形,故A错误,若ACBD,条件不足,无法明四边形ABCD是平行四边形,故B错误,故选D【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件.4A解析:A【解析】【分析】根据求一组数据的算术平均数计算即可求得【详解】依题意丙的学习时间为(分钟)故选A【点睛】本题考查了算术平均数,掌握求平均数的方法是解题的关键5D解析:D【分析】由矩形的性质得出OCB=
11、90,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:当PO=PD时;当OP=OD时;当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标【详解】解:四边形OABC是矩形,OCB=90,OC=4,BC=OA=10,D为OA的中点,OD=AD=5,当PO=PD时,点P在OD得垂直平分线上,点P的坐标为:(2.5,4);当OP=OD时,如图1所示:则OP=OD=5,点P的坐标为:(3,4);当DP=DO时,作PEOA于E,则PED=90,;分两种情况:当E在D的左侧时,如图2所示:OE=5-3=2,点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8
12、,点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故选:D【点睛】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果6D解析:D【解析】【分析】延长PF交AB的延长线于点G根据已知可得B,BEF,BFE的度数,再根据余角的性质可得到EPF的度数,从而不难求得FPC的度数【详解】解:延长PF交AB的延长线于点G在BGF与CPF中, BGFCPF(ASA),GFPF,F为PG中点又由题可知,BEP90,(直角三角形斜边上的中线等于斜边的一半),(中点定义),EFPF,FEPEPF
13、,BEPEPC90,BEPFEPEPCEPF,即BEFFPC,四边形ABCD为菱形,ABBC,ABC180A70,E,F分别为AB,BC的中点,BEBF, 易证FEFG,FGEFEG55,AGCD,FPCEGF55故选D【点睛】此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键7A解析:A【解析】【分析】先利用平行四边形的性质得到,再由折叠的性质得到,由此可得到,再利用勾股定理求解即可【详解】解:四边形ABCD是平行四边形,由折叠的性质可知:,在直角三角形中,故选A【点睛】本题主要考查了平行四边形的性质,折叠的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解8D
14、解析:D【分析】先设出货车的速度和轿车故障前的速度,再根据货车先出发10分钟后轿车出发,桥车发生故障的时间和两车相遇的时间,根据路程=速度时间列出方程组求解可判断;利用待定系数法求OA与CD解析式可判断,先求出点C货车的时间,用轿车修车20分钟-BC段货车追上轿车时间乘以货车速度,求出点D的坐标可判断;求出轿车速度2000=1800(米/分),到x=a时轿车追上货车两车相遇,列方程(a-65)(1800-1500)=27500,解得a=可判断【详解】解:由图象可知,当x=10时,轿车开始出发;当x=45时,轿车开始发生故障,则x=45-5=40(分钟),即货车出发40分钟时,轿车追上了货车,设
15、货车速度为x米/分,轿车故障前的速度为y米/分,根据题意,得:,解得:,货车的速度为1500米/分,轿车故障前的速度是2000米/分,故货车的速度为1500米/分正确;A(10,15000)设OA解析式:过点O(0,0)与点A,代入坐标得解得OA解析式:点C表示货车追上轿车,从B到C表示货车追及的距离是2500,货车所用速度为1500,追及时间为分点C(,0)CD段表示货车用20-分钟行走的路程,D点的横坐标为45+20=65分,纵坐标米,D(65,27500)故点D的坐标为正确;设CD解析式为,代入坐标得解得CD解析式为OA与CD解析式中的k相同,OACD,正确;D点表示轿车修好开始继续行驶
16、时,轿车的速度变为原来的,即此时轿车的速度为:2000=1800(米/分),到x=a时轿车追上货车两车相遇,(a-65)(1800-1500)=27500,解得a=65+,即图中a的值是;故图中a的值是正确,正确的结论有4个故选择D【点睛】本题考查一次函数图像与行程问题的应用,解答本题的关键是明确题意,从图像中获取信息,利用一次函数的性质和数形结合的思想,方程思想解答二、填空题9a3【解析】【分析】根据算术平方根是非负数列式计算即可得解【详解】解:根据题意,3a0,解得a3故答案为:a3【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质10B解析:5【解析】【分析】根据菱形的面积等于
17、对角线乘积的一半可求出另一条对角线BD的长然后根据勾股定理即可求得边长【详解】解:菱形ABCD的面积=ACBD,菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,另一条对角线BD的长=8cm;OA=OC,OB=OD,OA=3,OB=4,又ACBD,由勾股定理得:,故答案为:5【点睛】本题考查了菱形的性质菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键11289【解析】【分析】根据勾股定理计算即可【详解】根据勾股定理得:斜边的平方=x2=82+152=289故答案为:289【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定
18、等于斜边长的平方是解答本题的关键125【分析】先利用勾股定理求解 再利用矩形的性质求解 从而根据中位线的性质可得答案.【详解】解: 矩形, ,分别为,的中点, 故答案为:【点睛】本题考查的是矩形的性质,勾股定理的应用,三角形的中位线的性质,灵活应用以上知识是解题的关键.13满足即可,如y=-x+2,【分析】此一次函数解析式只要满足且b=2即可【详解】解:因为函数y随x的增大而减小,所以k0,因为图象经过,所以b2,故该解析式可以是:yx2【点睛】此题是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意
19、某一个条件就容易出错本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想14A解析:ABBC(答案不唯一)【分析】因为四边形ABCD是平行四边形,所以可添加条件为:邻边相等;对角线互相垂直【详解】添加ABBC,根据“有一组邻边相等的平行四边形是菱形”可使它成为菱形故填:AB=BC【点睛】本题考查菱形的判定,以平行四边形为基础,按照菱形判定定理解题即可15【分析】设BnAnAn+1的边长为an,根据直线的解析式能的得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出OBnAn=30,从而得出AnBn=OAn,列出部分an的值解析:【分析】设BnAnAn+1的边长为an,根据直线的
20、解析式能的得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出OBnAn=30,从而得出AnBn=OAn,列出部分an的值,发现规律 :an+1=2an,依此规律结合等边三角形的性质即可得出结论.【详解】设BnAn An+1的边长为an,点B1,B2,B3,是直线y= 上的第一象限内的点,过A1作A1Nx轴交直线OB1于N点,OA11,点N的横坐标为1,将x=1代入y=,得到y=,点N的坐标为(1,)A1N=在RtNOA1tanA1ON= A1OB1 = 30,又Bn AnAn+1为等边三角形,BnAnAn+1 = 60,OBnAn = 30,AnBn = OAn,OA1=1a1
21、=1,a2=1+1=2= 2a1,a3= 1+a1 +a2=4= 2a2,a4 = 1+a1 +a2十a3 =8= 2a3,an+1 = 2an,a5 =2a4= 16, a6 = 2a5 = 32,a7= 2a6= 64,A6B6A7为等边三角形,点B6的坐标为(a7-a6,(a7- a6),点B6的坐标为(48,16)故答案为:16.【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,解题的关键是找出规律:an+1=2an本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.16,或,【分析】先求出直线的解析式为,则可求,设,则,可求
22、,分两种情况讨论:当在轴负半轴时,由折叠可知,在中,由勾股定理可求,在中,可求,所以,解得,则,;当在轴正半轴时,同理可得,解解析:,或,【分析】先求出直线的解析式为,则可求,设,则,可求,分两种情况讨论:当在轴负半轴时,由折叠可知,在中,由勾股定理可求,在中,可求,所以,解得,则,;当在轴正半轴时,同理可得,解得,求得,【详解】解:设的直线解析式为,将,代入可得,解得,点是边上,轴,设,轴,当在轴负半轴时,如图,由折叠可知,在中,在中,解得,;当在轴正半轴时,如图,同理可得,解得,;综上所述:点坐标为,或,故答案为,或,【点睛】本题考查折叠的性质,熟练掌握平行四边形的性质、平面上点的坐标特点
23、、并灵活应用勾股定理是解题的关键三、解答题17(1);(2);(3);(4)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可得到答案;(2)原式从左向右依次计算即可得到答案;(3)原式根据零指数幂、负整数指数幂、二次根式的乘解析:(1);(2);(3);(4)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可得到答案;(2)原式从左向右依次计算即可得到答案;(3)原式根据零指数幂、负整数指数幂、二次根式的乘法以及绝对值的意义代简各项后,再外挂;(4)原式利用平方差分工和完全平方公式进行计算即可得到答案【详解】解:(1)=;(2)= =;(3)=;(4)= =【点睛】本题考查了
24、二次根式的混合运算,熟练掌握运算法则,运算顺序以及灵活运用乘法公式是解答本题的关键18计划修筑的这条公路不会穿过公园理由见解析【分析】先过点C作CDAB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案【详解】解析:计划修筑的这条公路不会穿过公园理由见解析【分析】先过点C作CDAB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案【详解】解:如图所示,过点C作CDAB,垂足为点D,由题意可得CAB=30,CBA=45,在RtCDB中,BCD=45,CBA=BCD,BD=C
25、D在RtACD中,CAB=30,AC=2CD设CD=DB=x,AC=2x由勾股定理得AD=AD+DB=2.732,x+x=2.732,x1即CD10.7,计划修筑的这条公路不会穿过公园【点睛】本题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角和含30度角的直角三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形19(1)见解析;(2)10;(3),4【解析】【分析】(1)根据A点坐标为,B点坐标为特点,建立直角坐标系;(2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB解析:(1)见解析;(2)10;(3),4【解析】【分析】(1)根据A点坐
26、标为,B点坐标为特点,建立直角坐标系;(2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上,据此画图;(3)根据题意,符合条件的点是点,结合勾股定理解得,即可解得周长,再由解得其面积【详解】解:(1)如图建立直角坐标系,(2)分三种情况讨论,如图,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上,符合条件的点C共有10个,故答案为:10;(3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,符合条件的点是点故答案为:,4【点睛】本题考查网格与勾股定理、网格中画等腰三角形、等腰三角形的性质等
27、知识,是重要考点,掌握相关知识是解题关键20(1)平行四边;(2)见解析【分析】(1)根据平移可得ACDF,AC=DF,可得四边形ADFC是平行四边形;(2)根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=BD,由题意可证解析:(1)平行四边;(2)见解析【分析】(1)根据平移可得ACDF,AC=DF,可得四边形ADFC是平行四边形;(2)根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=BD,由题意可证CDBF是平行四边形,即可得四边形CDBF是菱形【详解】解:(1)平移,ACDF,AC=DF,四边形ADFC是平行四边形,故答案为:平行四边;(2)ACB是直角三角形,D是A
28、B的中点,CD=AD=BD,四边形ADFC是平行四边形,AD=CF,ADFC,BD=CF,ADFC,BD=CF,四边形CDBF是平行四边形,又CD=BD,四边形CDBF是菱形【点睛】本题考查了平移的性质,平行四边形的判定,菱形的判定,灵活运用这些性质解决问题是本题的关键21(1)a的值为2,b的值为1;(2)2018.【解析】【分析】(1)根据二次根式有意义的条件得到 (2)根据公式 将原式化成多个式子相减,起到互相抵消的效果,做到化繁为简【详解】(1解析:(1)a的值为2,b的值为1;(2)2018.【解析】【分析】(1)根据二次根式有意义的条件得到 (2)根据公式 将原式化成多个式子相减,
29、起到互相抵消的效果,做到化繁为简【详解】(1)由题意得:, b2=1+ b=1|b|+b0b=1a的值为2,b的值为1(2), 【点睛】本题主要考查二次根式有意义的条件,学会应用公式推导一般并能实际运用.22(1)70;(2)320,y100x280;(3)5【分析】(1)利用待定系数法求一次函数解析式即可得到甲的工作效率;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度,然后求出更换解析:(1)70;(2)320,y100x280;(3)5【分析】(1)利用待定系数法求一次函数解析式即可得到甲的工作效率;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度,然后求出更换设备后加工
30、零件的数量y与时间x之间的函数解析式即可(3)根据(1)(2)求出的函数关系式,令两者的和为570,求出x的值即可.【详解】解:(1)图象经过原点及(6,420),设解析式为:ykx,6k420,解得:k70,y70x;甲的工作效率为70件/时;(2)乙3小时加工120件,乙的加工速度是:每小时40件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍更换设备后,乙组的工作速度是:每小时加工402.5100(件),a120+100(64)320;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y120+100(x4)100x280(3)由题意可得:70x+
31、100x-280=570,解得x=5,当x为5时,两组一共生产570件.【点睛】本题考查了一次函数的应用,解题的关键是根据题意得出函数关系式以及数形结合23(1)证明见解析;(2);(3)【分析】(1)先证,再据ASA证明ABPBCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RTNDQ解析:(1)证明见解析;(2);(3)【分析】(1)先证,再据ASA证明ABPBCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RTNDQ中用勾股定理列方程求解;(3)作QGAB于G,先证MB=MQ并设其为y,再
32、在RTMGQ中用勾股定理列出关于x、y的方程,并用x表示y;用y表示出MBQ的面积,用x表示出的面积最后据用x、y表示出S,并把其中的y用x代换即可【详解】(1)在正方形ABCD中,(2)在正方形ABCD中连接,如下图:由折叠知BC=,又AB=BC,BAN=90, ,设,(3)如下图,作,垂足为,由(1)知MBQ=CQB=MQBBM=MQ设,则,故【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用24(1)见解析;0;(2)x,x,x2,见解析;(3);(4)分段去绝对值【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出
33、函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)x,x,x2,见解析;(3);(4)分段去绝对值【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论【详解】解:(1)探究图象如图1所示,函数y|x|的最小值是0,故答案为0;(2)应用当x1时,yx1(x2)x;当x2时,yx1(x2)x;当2x1时,yx1(x2)x2;函数图象如图2所示,由图象可知,函数y|x1|x2|的最小值是,故填:x,x,x2,;(3)迁移当x时,yx12x13x1
34、4x15x16x17x18x136x8,y,当x时,yx12x13x14x15x16x17x18x120x6,y,当x时,yx12x13x14x15x16x17x18x16x4,3y,当x时,yx12x13x14x15x16x17x18x16x2,3y,当x时,yx12x13x14x15x16x17x18x116x,y4,当x时,yx12x13x14x15x16x17x18x124x2,4y6,当x时,yx12x13x14x15x16x17x18x130x4,6y11,当x1时,yx12x13x14x15x16x17x18x134x6,11y28,当x1时,yx12x13x14x15x16x1
35、7x18x136x8,y28,当x时,函数y|x1|2x1|3x1|8x1|取到最小值;(4)反思用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键25(1)4;(2)或8【分析】根据BABC,分别用勾股定理求出CO和AC的长.分情况AOOE和AOAE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.分情况i)当D在线解析:(1)4;(2)或8【分析】根据BABC,分别用勾股定理求出CO和AC的长.分情况AOOE和AOAE,画出图形,根据三角形中位线定理和证明三
36、角形全等解决问题.分情况i)当D在线段OB上时,如图3,过B作BGEF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质BDGBFG,得到BDBF,最后使用勾股定理求出结论ii)当D在线段OB的延长线上时,如图4,过B作BGDE于G,同理计算可得结论.【详解】解:(1)AO4,BO6,AB10,BABC,BC10,COAB,AOCBOC90,由勾股定理得:CO8,AC4;(2)分两种情况:i)如图1,当AOOE4时,过O作ONAC于N,ANEN,DEAC,ONDE,AOOD4;ii)当AOAE4时,如图2,在CAO和DAE中,CAODAE(AAS),ADAC4,OD44;分两种情况:i)当D在线段OB上时,如图3,过B作BGEF于G,SOBF:SOCF1:4,CB10BFEFAC,BGAC,GBFACB,AEBG,ADBG,ABBC,AACB,DBGGBF,DGBFGB,BDGBFG,BDBF,ODOBBD6,CD;ii)当D在线段OB的延长线上时,如图4,过B作BGDE于G,同理得,BC10,BF2,同理得:BFGBDF,BDBF2,RtCOD中,CD8,综上,CD的长为或8故答案为:或8【点睛】本题考查的是三角形全等的综合题,关键是根据三角形全等判定和性质、平行线性质、等腰三角形性质,三角形面积、勾股定理等,知识解答有难度.