1、人教中学七年级下册数学期末质量检测卷(附答案)一、选择题1的平方根是()A4BC2D2下列各组图形可以通过平移互相得到的是()ABCD3若点在第四象限,则点在( )A第一象限B第二象限C第三象限D第四象限4给出下列命题:等边三角形是等腰三角形;三角形的重心是三角形三条中线的交点;三角形的外角等于两个内角的和;三角形的角平分线是射线;三角形相邻两边组成的角叫三角形的内角;三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外其中正确命题的个数有( )A1个B2个C3个D4个5如果,直线,则等于( )ABCD6下列说法正确的是( )A一个数的立方根有两个,它们互为相反数B负数没有立方根C任何
2、一个数都有平方根和立方根D任何数的立方根都只有一个7在同一个平面内,为50,的两边分别与的两边平行,则的度数为( )A50B40或130C50或130D408如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2), 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )A(2020,1)B(2020,2)C(2021,1)D(2021,2)九、填空题9已知8,则x的值是_十、填空题10点关于轴的对称点的坐标为_十一、填空题11如图,在平面直角坐标系中,点,三点的坐标分别是,过
3、点作,交第一象限的角平分线于点,连接交轴于点则点的坐标为_十二、填空题12如图,BD平分ABC,EDBC,1=25,则2=_,3=_十三、填空题13如图,折叠宽度相等的长方形纸条,若1=54,则2=_度十四、填空题14大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用表示的小数部分若,其中x是整数,且,写出xy的相反数_十五、填空题15如果点P(x,y)的坐标满足x+yxy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为_十六、填空题16如图,已知A1(1,2),A2
4、(2,2),A3(3,0),A4(4,2),A5(5,2),A6(6,0),按这样的规律,则点A2021的坐标为 _十七、解答题17计算下列各式的值:(1)|2| + (1)2021;(2)十八、解答题18求下列各式中的x值:(1)169x2144;(2)(x2)2360.十九、解答题19如图所示,完成下列填空15(已知)a/ (同位角相等,两直线平行)3 (已知)a/b( )5+ 180(已知)a/b( )二十、解答题20在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(3,3),C(3,0)(1)在平面直角坐标系中,描出O,A,B,C四点;(2)依次连接
5、OA,AB,BC,CO后,得到图形的形状是_二十一、解答题21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值二十二、解答题22教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形由
6、此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1)(1)阅读理解:图1中大正方形的边长为_,图2中点A表示的数为_; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图利用中的成果,在图4的数轴上分别标出表示数0.5以及 的点,并比较它们的大小二十三、解答题23(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数二
7、十四、解答题24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明
8、理由.【参考答案】一、选择题1D解析:D【分析】先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答【详解】解:,4的平方根是,故选D【点睛】本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根2B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不
9、能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误故选:B【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键3A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置【详解】解:点P(a,b)在第四象限,a0,b0,-b0,点Q(-b,a)在第一象限故选:A【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键4B【分析】根据等边三角形的性质可以判断,根据三角形重心的定义可判断,根据三角形内角和定理可判断,根据三角形角平分线的定义可以判断,根据三角形的内角的定义可以判断,根据三角形的高的定义以及直角三角形的高可以判断【详解】等边三角形是等腰三角形,正
10、确;三角形的重心是三角形三条中线的交点,正确;三角形的外角等于不相邻的两个内角的和,故不正确;三角形的角平分线是线段,故不正确;三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,错误;三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上正确的有,共计2个,故选B【点睛】本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=65,EFC=180-DFE =115,故选B
11、【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误; C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只有一个,故本选项正确故选:D【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念7C【分析】如图,分两种情况进行讨论求解即可【详解】解:如图所示,ACBF,ADBE,A=FOD,B=FOD,B=A=50;如图
12、所示,ACBF,ADBE,A=BOD,B+BOD=180,B+A=180,B=130,故选C【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解8C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为202150541,所以,前505次循环运动点P解析:C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为202150541,所以,前505次循环运动点P共向右运动50542020个单位,剩余一次运动向右走1个单位,且纵
13、坐标为1故点P坐标为(2021,1),故选:C【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题九、填空题965【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐
14、标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.十一、填空题11【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E解析:【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB
15、的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.【详解】解:设D(x,y),点在第一象限的角平分线上,设直线AB的解析式为:,把,代入得: k=2,把代入,得b=-1,点D在上,设直线AD的解析式为:,可得, ,当x=0时,故答案为:【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.十二、填空题1250 【分析】由两直线平行,内错角、同位角分别相等可得出2=DBC,3=ABC=1+DBC,又由BD平分ABC得出DBC=1=25,利用等价替换法分别求出2和3即可解析:50 【分析】由两直线
16、平行,内错角、同位角分别相等可得出2=DBC,3=ABC=1+DBC,又由BD平分ABC得出DBC=1=25,利用等价替换法分别求出2和3即可【详解】解:BD平分ABC,DBC=1=25;又EDBC,2=DBC=25,3=ABC=1+DBC=50故答案为:25、50【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法十三、填空题1372【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,
17、由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键十四、填空题14【分析】根据题意得方法,估算的大小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反解析:【分析】根据题意得方法,估算的大小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反数为故答案为【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分十五、填空题
18、15(2,2),(-2,)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案【详解】解:某个“美丽点”到y轴的距离为2,x2,x+yxy,当解析:(2,2),(-2,)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案【详解】解:某个“美丽点”到y轴的距离为2,x2,x+yxy,当x2时,则y22y,解得:y2,点P的坐标为(2,2),当x2时,则y22y,解得:y,点P的坐标为(2,),综上所述:点P的坐标为(2,2)或(2,)故答案为:(2,2)或(2,)【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键十六、填空题16(
19、2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解解析:(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现,每6个点形成一个循环,A6(6,0),OA66,202163365,点A2021的位于第337个循环组的第5个,点A2021的横坐标为6336+52021,其纵坐标为:2,点A2021的坐标为(2021,2)
20、故答案为:(2021,2)【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解十七、解答题17(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,解析:(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,316,2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键十八、解答题
21、18(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.解析:(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.(2)(x2)2360,移项得:(x2)236,开方得:x-2=6或x-2=-6解得:x8或x4.故答案为(1)x;(2)x8或x4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19b,5,内错角相等,两直线平行,4,同旁内角互补
22、,两直线平行【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解【详解】解:15,(已解析:b,5,内错角相等,两直线平行,4,同旁内角互补,两直线平行【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解【详解】解:15,(已知)ab(同位角相等,两直线平行);35,(已知)ab(内错角相等,两直线平行);54180,(已知)ab(同旁内角互补,两直线平行)故答案是:b,5,内错角相等,两直线平行,4,同旁内角互补,两直线平行【点睛】本题考查平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答
23、题的关键二十、解答题20(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形【详解】解:(1)如图(2)四边形ABCO是正方形【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形【详解】解:(1)如图(2)四边形ABCO是正方形【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键二十一、解答题21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从
24、而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键二十二、解答题22(1);(2)见解析;见解析, 【分析】
25、(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;解析:(1);(2)见解析;见解析, 【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小【详解】解:设正方形边长为a,a2=2,a=,故答案为:,;(2)解:裁剪后拼得的大正方形如图所示: 设拼成的大正方形的边长为
26、b,b2=5,b=,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,比较大小:【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键二十三、解答题23(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PN
27、CD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,
28、FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键二十四、解答题24(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1
29、,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解
30、】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C
31、=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(18
32、0-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD
33、=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.